1
|
Ni YC, Lin ZK, Cheng CH, Pai MC, Chiu PY, Chang CC, Chang YT, Hung GU, Lin KJ, Hsiao IT, Lin CY, Yang HC. Classification Prediction of Alzheimer's Disease and Vascular Dementia Using Physiological Data and ECD SPECT Images. Diagnostics (Basel) 2024; 14:365. [PMID: 38396404 PMCID: PMC10888136 DOI: 10.3390/diagnostics14040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common forms of dementia. However, their neuropsychological and pathological features often overlap, making it difficult to distinguish between AD and VaD. In addition to clinical consultation and laboratory examinations, clinical dementia diagnosis in Taiwan will also include Tc-99m-ECD SPECT imaging examination. Through machine learning and deep learning technology, we explored the feasibility of using the above clinical practice data to distinguish AD and VaD. We used the physiological data (33 features) and Tc-99m-ECD SPECT images of 112 AD patients and 85 VaD patients in the Taiwanese Nuclear Medicine Brain Image Database to train the classification model. The results, after filtering by the number of SVM RFE 5-fold features, show that the average accuracy of physiological data in distinguishing AD/VaD is 81.22% and the AUC is 0.836; the average accuracy of training images using the Inception V3 model is 85% and the AUC is 0.95. Finally, Grad-CAM heatmap was used to visualize the areas of concern of the model and compared with the SPM analysis method to further understand the differences. This research method can quickly use machine learning and deep learning models to automatically extract image features based on a small amount of general clinical data to objectively distinguish AD and VaD.
Collapse
Affiliation(s)
- Yu-Ching Ni
- Department of Radiation Protection, National Atomic Research Institute, Taoyuan 325, Taiwan
| | - Zhi-Kun Lin
- Department of Radiation Protection, National Atomic Research Institute, Taoyuan 325, Taiwan
| | - Chen-Han Cheng
- Department of Radiation Protection, National Atomic Research Institute, Taoyuan 325, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Gerontology, National Cheng Kung University, Tainan 701, Taiwan
- Alzheimer’s Disease Research Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Institute of Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ya-Ting Chang
- Department of Neurology, Institute of Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Kun-Ju Lin
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Imaging Center and Department of Nuclear Medicine, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ing-Tsung Hsiao
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Imaging Center and Department of Nuclear Medicine, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chia-Yu Lin
- Department of Radiation Protection, National Atomic Research Institute, Taoyuan 325, Taiwan
| | - Hui-Chieh Yang
- Department of Radiation Protection, National Atomic Research Institute, Taoyuan 325, Taiwan
| |
Collapse
|
2
|
Mohamed AA, Marques O. Diagnostic Efficacy and Clinical Relevance of Artificial Intelligence in Detecting Cognitive Decline. Cureus 2023; 15:e47004. [PMID: 37965412 PMCID: PMC10641267 DOI: 10.7759/cureus.47004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cognitive impairment is an age-associated disorder of increasing prevalence as the aging population continues to grow. Classified based on the level of cognitive decline, memory, function, and capacity to conduct activities of daily living, cognitive impairment ranges from mild cognitive impairment to dementia. When considering the insidious nature of the etiologies responsible for varying degrees of cognitive impairment, early diagnosis may provide a clinical benefit through the facilitation of early treatment. Typical diagnosis relies heavily on evaluation in a primary care setting. However, there is evidence that other diagnostic tools may aid in an earlier diagnosis of the different underlying pathologies responsible for cognitive impairment. Artificial intelligence represents a new intersecting field with healthcare that may aid in the early detection of neurodegenerative disorders. When assessing the role of AI in detecting cognitive decline, it is important to consider both the diagnostic efficacy of AI algorithms and the clinical relevance and impact of early interventions as a result of early detection. Thus, this review highlights promising investigations and developments in the space of artificial intelligence and healthcare and their potential to impact patient outcomes.
Collapse
Affiliation(s)
- Ali A Mohamed
- Neurological Surgery, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA
- Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, USA
| | - Oge Marques
- Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA
- Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, USA
| |
Collapse
|
3
|
Chaki J, Woźniak M. Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Battineni G, Chintalapudi N, Hossain MA, Losco G, Ruocco C, Sagaro GG, Traini E, Nittari G, Amenta F. Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering (Basel) 2022; 9:370. [PMID: 36004895 PMCID: PMC9405227 DOI: 10.3390/bioengineering9080370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The progressive aging of populations, primarily in the industrialized western world, is accompanied by the increased incidence of several non-transmittable diseases, including neurodegenerative diseases and adult-onset dementia disorders. To stimulate adequate interventions, including treatment and preventive measures, an early, accurate diagnosis is necessary. Conventional magnetic resonance imaging (MRI) represents a technique quite common for the diagnosis of neurological disorders. Increasing evidence indicates that the association of artificial intelligence (AI) approaches with MRI is particularly useful for improving the diagnostic accuracy of different dementia types. Objectives: In this work, we have systematically reviewed the characteristics of AI algorithms in the early detection of adult-onset dementia disorders, and also discussed its performance metrics. Methods: A document search was conducted with three databases, namely PubMed (Medline), Web of Science, and Scopus. The search was limited to the articles published after 2006 and in English only. The screening of the articles was performed using quality criteria based on the Newcastle-Ottawa Scale (NOS) rating. Only papers with an NOS score ≥ 7 were considered for further review. Results: The document search produced a count of 1876 articles and, because of duplication, 1195 papers were not considered. Multiple screenings were performed to assess quality criteria, which yielded 29 studies. All the selected articles were further grouped based on different attributes, including study type, type of AI model used in the identification of dementia, performance metrics, and data type. Conclusions: The most common adult-onset dementia disorders occurring were Alzheimer's disease and vascular dementia. AI techniques associated with MRI resulted in increased diagnostic accuracy ranging from 73.3% to 99%. These findings suggest that AI should be associated with conventional MRI techniques to obtain a precise and early diagnosis of dementia disorders occurring in old age.
Collapse
Affiliation(s)
- Gopi Battineni
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Nalini Chintalapudi
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Mohammad Amran Hossain
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Giuseppe Losco
- School of Architecture and Design, University of Camerino, 63100 Ascoli Piceno, Italy
| | - Ciro Ruocco
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Getu Gamo Sagaro
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Enea Traini
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Giulio Nittari
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| | - Francesco Amenta
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
5
|
McCombe N, Joshi A, Finn DP, McClean PL, Roberts G, O'Brien JT, Thomas AJ, Kane JPM, Wong-Lin K. Distinguishing Lewy Body Dementia from Alzheimer's Disease using Machine Learning on Heterogeneous Data: A Feasibility Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4929-4933. [PMID: 36085984 DOI: 10.1109/embc48229.2022.9871714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dementia with Lewy Bodies (DLB) is the second most common form of dementia, but diagnostic markers for DLB can be expensive and inaccessible, and many cases of DLB are undiagnosed. This work applies machine learning techniques to determine the feasibility of distinguishing DLB from Alzheimer's Disease (AD) using heterogeneous data features. The Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was first applied using a Leave-One-Out Cross-Validation protocol to a dataset comprising DLB and AD cases. Then, interpretable association rule-based diagnostic classifiers were obtained for distinguishing DLB from AD. The various diagnostic classifiers generated by this process had high accuracy over the whole dataset (mean accuracy of 94%). The mean accuracy in classifying their out-of-sample case was 80.5%. Every classifier generated consisted of very simple structure, each using 1-2 classification rules and 1-3 data features. As a group, the classifiers were heterogeneous and used several different data features. In particular, some of the classifiers used very simple and inexpensive diagnostic features, yet with high diagnostic accuracy. This work suggests that opportunities may exist for incorporating accessible diagnostic assessments while improving diagnostic rate for DLB. Clinical Relevance- Simple and interpretable high-performing machine learning algorithms identified a variety of readily available clinical assessments for differential diagnosis of dementia offering the opportunities to incorporate various simple and inexpensive screening tests for DLB and addressing the problem of DLB underdiagnosis.
Collapse
|