1
|
Saba L, Maindarkar M, Khanna NN, Puvvula A, Faa G, Isenovic E, Johri A, Fouda MM, Tiwari E, Kalra MK, Suri JS. An Artificial Intelligence-Based Non-Invasive Approach for Cardiovascular Disease Risk Stratification in Obstructive Sleep Apnea Patients: A Narrative Review. Rev Cardiovasc Med 2024; 25:463. [PMID: 39742217 PMCID: PMC11683711 DOI: 10.31083/j.rcm2512463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025] Open
Abstract
Background Obstructive sleep apnea (OSA) is a severe condition associated with numerous cardiovascular complications, including heart failure. The complex biological and morphological relationship between OSA and atherosclerotic cardiovascular disease (ASCVD) poses challenges in predicting adverse cardiovascular outcomes. While artificial intelligence (AI) has shown potential for predicting cardiovascular disease (CVD) and stroke risks in other conditions, there is a lack of detailed, bias-free, and compressed AI models for ASCVD and stroke risk stratification in OSA patients. This study aimed to address this gap by proposing three hypotheses: (i) a strong relationship exists between OSA and ASCVD/stroke, (ii) deep learning (DL) can stratify ASCVD/stroke risk in OSA patients using surrogate carotid imaging, and (iii) including OSA risk as a covariate with cardiovascular risk factors can improve CVD risk stratification. Methods The study employed the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) search strategy, yielding 191 studies that link OSA with coronary, carotid, and aortic atherosclerotic vascular diseases. This research investigated the link between OSA and CVD, explored DL solutions for OSA detection, and examined the role of DL in utilizing carotid surrogate biomarkers by saving costs. Lastly, we benchmark our strategy against previous studies. Results (i) This study found that CVD and OSA are indirectly or directly related. (ii) DL models demonstrated significant potential in improving OSA detection and proved effective in CVD risk stratification using carotid ultrasound as a biomarker. (iii) Additionally, DL was shown to be useful for CVD risk stratification in OSA patients; (iv) There are important AI attributes such as AI-bias, AI-explainability, AI-pruning, and AI-cloud, which play an important role in CVD risk for OSA patients. Conclusions DL provides a powerful tool for CVD risk stratification in OSA patients. These results can promote several recommendations for developing unique, bias-free, and explainable AI algorithms for predicting ASCVD and stroke risks in patients with OSA.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Mahesh Maindarkar
- School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Anudeep Puvvula
- Department of Radiology, and Pathology, Annu’s Hospitals for Skin and Diabetes, 524101 Nellore, India
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy
- Now with Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Esma Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 192204 Belgrade, Serbia
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Ekta Tiwari
- Cardiology Imaging, Visvesvaraya National Institute of Technology Nagpur, 440010 Nagpur, India
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- University Center for Research & Development, Chandigarh University, 140413 Mohali, India
- Department of CE, Graphics Era Deemed to be University, 248002 Dehradun, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), 440008 Pune, India
- Stroke Diagnostic and Monitoring Division, AtheroPoint™️, Roseville, CA 95661, USA
| |
Collapse
|
2
|
Gupta S, Dubey AK, Singh R, Kalra MK, Abraham A, Kumari V, Laird JR, Al-Maini M, Gupta N, Singh I, Viskovic K, Saba L, Suri JS. Four Transformer-Based Deep Learning Classifiers Embedded with an Attention U-Net-Based Lung Segmenter and Layer-Wise Relevance Propagation-Based Heatmaps for COVID-19 X-ray Scans. Diagnostics (Basel) 2024; 14:1534. [PMID: 39061671 PMCID: PMC11275579 DOI: 10.3390/diagnostics14141534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Diagnosing lung diseases accurately is crucial for proper treatment. Convolutional neural networks (CNNs) have advanced medical image processing, but challenges remain in their accurate explainability and reliability. This study combines U-Net with attention and Vision Transformers (ViTs) to enhance lung disease segmentation and classification. We hypothesize that Attention U-Net will enhance segmentation accuracy and that ViTs will improve classification performance. The explainability methodologies will shed light on model decision-making processes, aiding in clinical acceptance. Methodology: A comparative approach was used to evaluate deep learning models for segmenting and classifying lung illnesses using chest X-rays. The Attention U-Net model is used for segmentation, and architectures consisting of four CNNs and four ViTs were investigated for classification. Methods like Gradient-weighted Class Activation Mapping plus plus (Grad-CAM++) and Layer-wise Relevance Propagation (LRP) provide explainability by identifying crucial areas influencing model decisions. Results: The results support the conclusion that ViTs are outstanding in identifying lung disorders. Attention U-Net obtained a Dice Coefficient of 98.54% and a Jaccard Index of 97.12%. ViTs outperformed CNNs in classification tasks by 9.26%, reaching an accuracy of 98.52% with MobileViT. An 8.3% increase in accuracy was seen while moving from raw data classification to segmented image classification. Techniques like Grad-CAM++ and LRP provided insights into the decision-making processes of the models. Conclusions: This study highlights the benefits of integrating Attention U-Net and ViTs for analyzing lung diseases, demonstrating their importance in clinical settings. Emphasizing explainability clarifies deep learning processes, enhancing confidence in AI solutions and perhaps enhancing clinical acceptance for improved healthcare results.
Collapse
Affiliation(s)
- Siddharth Gupta
- Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India;
| | - Arun K. Dubey
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (A.K.D.); (N.G.)
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Ajith Abraham
- Department of Computer Science, Bennett University, Greater Noida 201310, India;
| | - Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Neha Gupta
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (A.K.D.); (N.G.)
| | - Inder Singh
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Klaudija Viskovic
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Luca Saba
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
| | - Jasjit S. Suri
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India
- Department of Computer Science & Engineering, Symbiosis Institute of Technology, Nagpur Campus 440008, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
3
|
Saba L, Maindarkar M, Johri AM, Mantella L, Laird JR, Khanna NN, Paraskevas KI, Ruzsa Z, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh N, Isenovic ER, Viswanathan V, Fouda MM, Suri JS. UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review. Rev Cardiovasc Med 2024; 25:184. [PMID: 39076491 PMCID: PMC11267214 DOI: 10.31083/j.rcm2505184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)-based preventive, precision, and personalized ( aiP 3 ) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the aiP 3 framework. Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in the aiP 3 framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. aiP 3 model signifies a promising advancement in CVD/Stroke risk assessment.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Mahesh Maindarkar
- School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Laura Mantella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD 20742, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2368 Agios Dometios, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
4
|
Chandramohan A, Krothapalli V, Augustin A, Kandagaddala M, Thomas HM, Sudarsanam TD, Jagirdar A, Govil S, Kalyanpur A. Teleradiology and technology innovations in radiology: status in India and its role in increasing access to primary health care. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 23:100195. [PMID: 38404514 PMCID: PMC10884973 DOI: 10.1016/j.lansea.2023.100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 02/27/2024]
Abstract
Background There is an inequitable distribution of radiology facilities in India. This scoping review aimed at mapping the available technology instruments to improve access to imaging at primary health care; to identify the facilitators and barriers, and the knowledge gaps for widespread adaptation of technology solutions. Methods A search was conducted using broad inclusive terms non-specific to subtypes of medical imaging devices or informatics. Work published in the English language between 2005 and 2022, conducted primarily in India, and with full manuscripts were included. Two authors independently screened the abstracts against the inclusion criteria for full-text review and a senior author settled discrepancies. Data were extracted using DistillerSR software. Findings 43 original articles and 52 non-academic materials were finally reviewed. The data was from 10 Indian states with n = 9 from rural settings. The broad trends in original articles were: connectivity using teleradiology (n = 7), mobile digital imaging units (n = 9), artificial intelligence (n = 16); mobile devices and smartphone applications (n = 7); data security (n = 7) and web-based technology (n = 2); public-private partnership (n = 9); cost (n = 2); concordance (n = 19); evaluation (n = 4); implementation (n = 2). Interpretation Available evidence suggests that teleradiology when combined with AI and mobile digital imaging units can address radiologist shortages; strengthen programs aimed at population screening and emergency care. However, there is insufficient data on the scale of teleradiology networks within India; needs assessment; cost; facilitators, and barriers for implementation of technologies solutions in primary healthcare settings. Regulations governing quality standards, data protection, and confidentiality are unclear. Funding The authors are The Lancet Citizen's Commission fellows. The Lancet Commission has received financial support from the Lakshmi Mittal and Family South Asia Institute, Harvard University; Christian Medical College, Vellore (CMC), Vellore; Azim Premji Foundation, Infosys; Kirloskar Systems Ltd.; Mahindra & Mahindra Ltd.; Rohini Nilekani Philanthropies; and Serum Institute of India. The views expressed are those of the author(s) and not necessarily those of the Lancet Citizens' Commission or its partners.
Collapse
Affiliation(s)
| | | | - Ann Augustin
- Department of Radiology, Christian Medical College, Vellore, 632004, India
| | | | | | | | | | - Shalini Govil
- Department of Radiology, Christian Medical College, Vellore, 632004, India
- Naruvi Hospital, Vellore, India
- Pun Hlaing Hospital, Myanmar
| | - Arjun Kalyanpur
- Teleradiology Solutions, Whitefield, Bengaluru, Karnataka, 560048, India
| |
Collapse
|
5
|
Oh S, Ryu J, Shin HJ, Song JH, Son SY, Hur H, Han SU. Deep learning using computed tomography to identify high-risk patients for acute small bowel obstruction: development and validation of a prediction model : a retrospective cohort study. Int J Surg 2023; 109:4091-4100. [PMID: 37720936 PMCID: PMC10720875 DOI: 10.1097/js9.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE To build a novel classifier using an optimized 3D-convolutional neural network for predicting high-grade small bowel obstruction (HGSBO). SUMMARY BACKGROUND DATA Acute SBO is one of the most common acute abdominal diseases requiring urgent surgery. While artificial intelligence and abdominal computed tomography (CT) have been used to determine surgical treatment, differentiating normal cases, HGSBO requiring emergency surgery, and low-grade SBO (LGSBO) or paralytic ileus is difficult. METHODS A deep learning classifier was used to predict high-risk acute SBO patients using CT images at a tertiary hospital. Images from three groups of subjects (normal, nonsurgical, and surgical) were extracted; the dataset used in the study included 578 cases from 250 normal subjects, with 209 HGSBO and 119 LGSBO patients; over 38 000 CT images were used. Data were analyzed from 1 June 2022 to 5 February 2023. The classification performance was assessed based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve. RESULTS After fivefold cross-validation, the WideResNet classifier using dual-branch architecture with depth retention pooling achieved an accuracy of 72.6%, an area under receiver operating characteristic of 0.90, a sensitivity of 72.6%, a specificity of 86.3%, a positive predictive value of 74.1%, and a negative predictive value of 86.6% on all the test sets. CONCLUSIONS These results show the satisfactory performance of the deep learning classifier in predicting HGSBO compared to the previous machine learning model. The novel 3D classifier with dual-branch architecture and depth retention pooling based on artificial intelligence algorithms could be a reliable screening and decision-support tool for high-risk patients with SBO.
Collapse
Affiliation(s)
- Seungmin Oh
- Department of Artificial Intelligence, Ajou University, Suwon, South Korea
| | - Jongbin Ryu
- Department of Artificial Intelligence, Ajou University, Suwon, South Korea
- Department of Software and Computer Engineering, Ajou University, Suwon, South Korea
| | - Ho-Jung Shin
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Jeong Ho Song
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Sang-Yong Son
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
6
|
Dubey AK, Chabert GL, Carriero A, Pasche A, Danna PSC, Agarwal S, Mohanty L, Nillmani, Sharma N, Yadav S, Jain A, Kumar A, Kalra MK, Sobel DW, Laird JR, Singh IM, Singh N, Tsoulfas G, Fouda MM, Alizad A, Kitas GD, Khanna NN, Viskovic K, Kukuljan M, Al-Maini M, El-Baz A, Saba L, Suri JS. Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based Lung Segmentation: A Data Augmentation and Balancing Framework. Diagnostics (Basel) 2023; 13:1954. [PMID: 37296806 PMCID: PMC10252539 DOI: 10.3390/diagnostics13111954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND MOTIVATION Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.
Collapse
Affiliation(s)
- Arun Kumar Dubey
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Alessio Pasche
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pietro S. C. Danna
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA
| | - Lopamudra Mohanty
- ABES Engineering College, Ghaziabad 201009, India
- Department of Computer Science Engineering, Bennett University, Greater Noida 201310, India
| | - Nillmani
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sarita Yadav
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Achin Jain
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Ashish Kumar
- Department of Computer Science Engineering, Bennett University, Greater Noida 201310, India
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - David W. Sobel
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Azra Alizad
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Melita Kukuljan
- Department of Interventional and Diagnostic Radiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology & Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Ayman El-Baz
- Biomedical Engineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
7
|
Saxena S, Jena B, Mohapatra B, Gupta N, Kalra M, Scartozzi M, Saba L, Suri JS. Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation. Comput Biol Med 2023; 153:106492. [PMID: 36621191 DOI: 10.1016/j.compbiomed.2022.106492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The O6-methylguanine-DNA methyltransferase (MGMT) is a deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential clinical brain tumor biomarker for Glioblastoma Multiforme (GBM). Knowing the status of MGMT methylation biomarkers using multi-parametric MRI (mp-MRI) helps neuro-oncologists to analyze GBM and its treatment plan. METHOD The hand-crafted radiomics feature extraction of GBM's subregions, such as edema(ED), tumor core (TC), and enhancing tumor (ET) in the machine learning (ML) framework, was investigated using support vector machine(SVM), K-Nearest Neighbours (KNN), random forest (RF), LightGBM, and extreme gradient boosting (XGB). For tissue-level analysis of the promotor genes in GBM, we used the deep residual neural network (ResNet-18) with 3D architecture, followed by EfficientNet-based investigation for variants as B0 and B1. Lastly, we analyzed the fused deep learning (FDL) framework that combines ML and DL frameworks. RESULT Structural mp-MRI consisting of T1, T2, FLAIR, and T1GD having a size of 400 and 185 patients, respectively, for discovery and replication cohorts. Using the CV protocol in the ResNet-3D framework, MGMT methylation status prediction in mp-MRI gave the AUC of 0.753 (p < 0.0001) and 0.72 (p < 0.0001) for the discovery and replication cohort, respectively. We presented that the FDL is ∼7% superior to solo DL and ∼15% to solo ML. CONCLUSION The proposed study aims to provide solutions for building an efficient predictive model of MGMT for GBM patients using deep radiomics features obtained from mp-MRI with the end-to-end ResNet-18 3D and FDL imaging signatures.
Collapse
Affiliation(s)
- Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Biswajit Jena
- Department of Computer Science & Engineering, Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, India
| | - Bibhabasu Mohapatra
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Neha Gupta
- Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi, India
| | - Manudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mario Scartozzi
- Department of Radiology, A.O.U, di Cagliari-Polo di Monserrato s.s, 09124, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, A.O.U, di Cagliari-Polo di Monserrato s.s, 09124, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™ LLC, Roseville, CA, USA; Knowledge Engineering Centre, Global Biomedical Technologies, Inc, Roseville, CA, USA.
| |
Collapse
|
8
|
Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics (Basel) 2023; 13:diagnostics13030481. [PMID: 36766587 PMCID: PMC9914433 DOI: 10.3390/diagnostics13030481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The biopsy is a gold standard method for tumor grading. However, due to its invasive nature, it has sometimes proved fatal for brain tumor patients. As a result, a non-invasive computer-aided diagnosis (CAD) tool is required. Recently, many magnetic resonance imaging (MRI)-based CAD tools have been proposed for brain tumor grading. The MRI has several sequences, which can express tumor structure in different ways. However, a suitable MRI sequence for brain tumor classification is not yet known. The most common brain tumor is 'glioma', which is the most fatal form. Therefore, in the proposed study, to maximize the classification ability between low-grade versus high-grade glioma, three datasets were designed comprising three MRI sequences: T1-Weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion recovery (FLAIR). Further, five well-established convolutional neural networks, AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 were adopted for tumor classification. An ensemble algorithm was proposed using the majority vote of above five deep learning (DL) models to produce more consistent and improved results than any individual model. Five-fold cross validation (K5-CV) protocol was adopted for training and testing. For the proposed ensembled classifier with K5-CV, the highest test accuracies of 98.88 ± 0.63%, 97.98 ± 0.86%, and 94.75 ± 0.61% were achieved for FLAIR, T2W, and T1W-MRI data, respectively. FLAIR-MRI data was found to be most significant for brain tumor classification, where it showed a 4.17% and 0.91% improvement in accuracy against the T1W-MRI and T2W-MRI sequence data, respectively. The proposed ensembled algorithm (MajVot) showed significant improvements in the average accuracy of three datasets of 3.60%, 2.84%, 1.64%, 4.27%, and 1.14%, respectively, against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50.
Collapse
|
9
|
Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji JS, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022; 11:6844. [PMID: 36431321 PMCID: PMC9693632 DOI: 10.3390/jcm11226844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | | | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Egkomi 2408, Cyprus
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
10
|
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics (Basel) 2022; 12:diagnostics12092132. [PMID: 36140533 PMCID: PMC9497601 DOI: 10.3390/diagnostics12092132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. Method: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. Results: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. Conclusion: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice.
Collapse
|
11
|
Khan MA, Azhar M, Ibrar K, Alqahtani A, Alsubai S, Binbusayyis A, Kim YJ, Chang B. COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4254631. [PMID: 35845911 PMCID: PMC9284325 DOI: 10.1155/2022/4254631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
COVID-19 detection and classification using chest X-ray images is a current hot research topic based on the important application known as medical image analysis. To halt the spread of COVID-19, it is critical to identify the infection as soon as possible. Due to time constraints and the expertise of radiologists, manually diagnosing this infection from chest X-ray images is a difficult and time-consuming process. Artificial intelligence techniques have had a significant impact on medical image analysis and have also introduced several techniques for COVID-19 diagnosis. Deep learning and explainable AI have shown significant popularity among AL techniques for COVID-19 detection and classification. In this work, we propose a deep learning and explainable AI technique for the diagnosis and classification of COVID-19 using chest X-ray images. Initially, a hybrid contrast enhancement technique is proposed and applied to the original images that are later utilized for the training of two modified deep learning models. The deep transfer learning concept is selected for the training of pretrained modified models that are later employed for feature extraction. Features of both deep models are fused using improved canonical correlation analysis that is further optimized using a hybrid algorithm named Whale-Elephant Herding. Through this algorithm, the best features are selected and classified using an extreme learning machine (ELM). Moreover, the modified deep models are utilized for Grad-CAM visualization. The experimental process was conducted on three publicly available datasets and achieved accuracies of 99.1, 98.2, and 96.7%, respectively. Moreover, the ablation study was performed and showed that the proposed accuracy is better than the other methods.
Collapse
Affiliation(s)
| | - Marium Azhar
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan
| | - Kainat Ibrar
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan
| | - Abdullah Alqahtani
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shtwai Alsubai
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Adel Binbusayyis
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ye Jin Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Byoungchol Chang
- Center for Computational Social Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PSC, Saba L, Mehmedović A, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Fouda MM, Naidu S, Viskovic K, Kalra MK. COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans. Diagnostics (Basel) 2022; 12:1482. [PMID: 35741292 PMCID: PMC9221733 DOI: 10.3390/diagnostics12061482] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Armin Mehmedović
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02912, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 17674 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | | | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22902, USA;
| | - Vijay Rathore
- AtheroPoint LLC., Roseville, CA 95661, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 1122 Budapest, Hungary;
| | - Mostafa M. Fouda
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Klaudija Viskovic
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|