1
|
Xiong L, Cheng J. Rewiring lipid metabolism to enhance immunotherapy efficacy in melanoma: a frontier in cancer treatment. Front Oncol 2025; 15:1519592. [PMID: 40376583 PMCID: PMC12078133 DOI: 10.3389/fonc.2025.1519592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Immunotherapy has transformed the landscape of melanoma treatment, offering significant extensions in survival for many patients. Despite these advancements, nearly 50% of melanoma cases remain resistant to such therapies, highlighting the need for novel approaches. Emerging research has identified lipid metabolism reprogramming as a key factor in promoting melanoma progression and resistance to immunotherapy. This reprogramming not only supports tumor growth and metastasis but also creates an immunosuppressive environment that impairs the effectiveness of treatments such as immune checkpoint inhibitors (ICIs). This review delves into the intricate relationship between lipid metabolism and immune system interactions in melanoma. We will explore how alterations in lipid metabolic pathways contribute to immune evasion and therapy resistance, emphasizing recent discoveries in this area. Additionally, we also highlights novel therapeutic strategies targeting lipid metabolism to enhance immune checkpoint inhibitor (ICI) efficacy.
Collapse
Affiliation(s)
- Lihua Xiong
- Department of Dermatology, Cheng Du Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Jian Cheng
- Department of Chinese Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
De-Giorgio F, Guerreri M, Gatta R, Bergamin E, De Vita V, Mancino M, Boldrini L, Sala E, Pascali VL. Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation. Int J Legal Med 2025; 139:667-677. [PMID: 39702800 DOI: 10.1007/s00414-024-03396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The aim of this study is to investigate the potential of radiomic features extracted from postmortem computed tomography (PMCT) scans of the lateral cerebral ventricles (LCVs) to provide information on the time since death, or postmortem interval (PMI), a critical aspect of forensic medicine. Periodic PMCT scans, referred to as "sequential scans", were obtained from twelve corpses with known times of death, ranging from 5.5 to 273 h postmortem. Radiomics features were then extracted from the LCVs, and a mixed-effect model, specifically designed for sequential data, was employed to assess the association between feature values and PMI. Four model variants were fitted to the data to identify the best functional form to explain the relationship between the variables. Significant associations were observed for features, the most significant being the median Hounsfield Units (HU) within the LCVs (p < 9.47 × 10⁻⁹), LCVs surface area (p < 4.69 × 10⁻⁶), L-major axis (p < 2.17 × 10⁻⁵), L-minor axis (p < 1.30 × 10⁻⁴), and HU entropy (p < 4.16 × 10⁻⁴). Our findings align with previous studies, supporting a logarithmic model for PMI-related changes in LCV volume and mean HU intensity value. This study highlights the potential of PMCT-based radiomics as source of complementary information that could be integrated into existing methods for PMI estimation. Our results support the application of a quantitative imaging approach in forensic investigations.
Collapse
Affiliation(s)
- Fabio De-Giorgio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Michele Guerreri
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Roberto Gatta
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Eva Bergamin
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittorio De Vita
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Mancino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Evis Sala
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo L Pascali
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Kallos-Balogh P, Vas NF, Toth Z, Szakall S, Szabo P, Garai I, Kepes Z, Forgacs A, Szatmáriné Egeresi L, Magnus D, Balkay L. Multicentric study on the reproducibility and robustness of PET-based radiomics features with a realistic activity painting phantom. PLoS One 2024; 19:e0309540. [PMID: 39446842 PMCID: PMC11500893 DOI: 10.1371/journal.pone.0309540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Previously, we developed an "activity painting" tool for PET image simulation; however, it could simulate heterogeneous patterns only in the air. We aimed to improve this phantom technique to simulate arbitrary lesions in a radioactive background to perform relevant multi-center radiomic analysis. We conducted measurements moving a 22Na point source in a 20-liter background volume filled with 5 kBq/mL activity with an adequately controlled robotic system to prevent the surge of the water. Three different lesion patterns were "activity-painted" in five PET/CT cameras, resulting in 8 different reconstructions. We calculated 46 radiomic indeces (RI) for each lesion and imaging setting, applying absolute and relative discretization. Reproducibility and reliability were determined by the inter-setting coefficient of variation (CV) and the intraclass correlation coefficient (ICC). Hypothesis tests were used to compare RI between lesions. By simulating precisely the same lesions, we confirmed that the reconstructed voxel size and the spatial resolution of different PET cameras were critical for higher order RI. Considering conventional RIs, the SUVpeak and SUVmean proved the most reliable (CV<10%). CVs above 25% are more common for higher order RIs, but we also found that low CVs do not necessarily imply robust parameters but often rather insensitive RIs. Based on the hypothesis test, most RIs could clearly distinguish between the various lesions using absolute resampling. ICC analysis also revealed that most RIs were more reproducible with absolute discretization. The activity painting method in a real radioactive environment proved suitable for precisely detecting the radiomic differences derived from the different camera settings and texture characteristics. We also found that inter-setting CV is not an appropriate metric for analyzing RI parameters' reliability and robustness. Although multicentric cohorts are increasingly common in radiomics analysis, realistic texture phantoms can provide indispensable information on the sensitivity of an RI and how an individual RI parameter measures the texture.
Collapse
Affiliation(s)
- Piroska Kallos-Balogh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norman Felix Vas
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Toth
- Medicopus Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | | | | | - Ildiko Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Scanomed Ltd., Debrecen, Debrecen, Hungary
| | - Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dahlbom Magnus
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Zhang Y, Hu Y, Zhao S, Xu S. Validation of the 2018 FIGO staging system for stage IIIC cervical cancer by determining the metabolic and radiomic heterogeneity of primary tumors based on 18F-FDG PET/CT. Abdom Radiol (NY) 2024; 49:2027-2039. [PMID: 38526594 DOI: 10.1007/s00261-024-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE This study aimed to validate the 2018 FIGO staging system of cervical cancer (CC) by determining the metabolic and radiomic heterogeneity of primary tumors between stage IIIC1 and IIIC2. METHODS 168 patients with squamous cell CC underwent pre-treatment fluorine-18 fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT) and were randomly allocated to training and testing cohorts with a 7:3 ratio. Radiomics features were extracted from the primary tumors based on CT and PET data. Ten metabolic parameters of the primary tumors were also assessed. After feature selection, three logistic regression radiomics models, involving (1) 2 CT features, (2) 3 PET features, and (3) 2 CT features + 3 PET features, respectively, and one random forest model were established. Finally, area under the curve (AUC) values and calibration curves were used to evaluate the 4 models. RESULTS The IIIC1 and IIIC2 groups did not differ significantly in age, weight, height, or the 10 major metabolic parameters (P > 0.05). The AUCs of the 4 models were 0.577, 0.639, 0.763, and 0.506, respectively, in the training cohort, and 0.789, 0.699, 0.761, and 0.538, respectively, in the testing cohort. The model fit of the logistic regression model based on CT + PET data was good in both the training and testing cohorts. CONCLUSION Our study offers additional diagnostic options for PALN metastasis, which could impact treatment decisions. Our results indirectly support the conclusions of previous studies recommending that primary tumors should be considered during IIIC staging.
Collapse
Affiliation(s)
- Yun Zhang
- Department of PET/CT Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Shuang Zhao
- Department of PET/CT Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Xu
- Department of PET/CT Center, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Triumbari EKA, Gatta R, Maiolo E, De Summa M, Boldrini L, Mayerhoefer ME, Hohaus S, Nardo L, Morland D, Annunziata S. Baseline 18F-FDG PET/CT Radiomics in Classical Hodgkin's Lymphoma: The Predictive Role of the Largest and the Hottest Lesions. Diagnostics (Basel) 2023; 13:1391. [PMID: 37189492 PMCID: PMC10137254 DOI: 10.3390/diagnostics13081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin's lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann-Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - Roberto Gatta
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Elena Maiolo
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marco De Summa
- Medipass S.p.a. Integrative Service PET/CT–Radiofarmacy TracerGLab, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Luca Boldrini
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marius E. Mayerhoefer
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefan Hohaus
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Hematology Section, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Lorenzo Nardo
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - David Morland
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- CReSTIC EA 3804 et Laboratoire de Biophysique, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| |
Collapse
|
7
|
Machine learning approach using 18 F-FDG PET-based radiomics in differentiation of lung adenocarcinoma with bronchoalveolar distribution and infection. Nucl Med Commun 2023; 44:302-308. [PMID: 36756766 DOI: 10.1097/mnm.0000000000001667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
OBJECTIVE In this study, we aimed to evaluate the role of 18F-fluorodeoxyglucose PET/computerized tomography ( 18 F-FDG PET/CT)-based radiomic features in the differentiation of infection and malignancy in consolidating pulmonary lesions and to develop a prediction model based on radiomic features. MATERIAL AND METHODS The images of 106 patients who underwent 18 F-FDG PET/CT of consolidated lesions observed in the lung between January 2015 and July 2020 were evaluated using LIFEx software. The region of interest of the lung lesions was determined and volumetric and textural features were obtained. Clinical and radiomic data were evaluated with machine learning algorithms to build a model. RESULTS There was a significant difference in all standardized uptake value (SUV) parameters and 26 texture features between the infection and cancer groups. The features with a correlation coefficient of less than 0.7 among the significant features were determined as SUV mean , GLZLM_SZE, GLZLM_LZE, GLZLM_SZLGE and GLZLM_ZLNU. These five features were analyzed in the Waikato Environment for Knowledge Analysis program to create a model that could distinguish infection and cancer groups, and the model performance was found to be the highest with logistic regression (area under curve, 0.813; accuracy, 75.7%). The sensitivity and specificity values of the model in distinguishing cancer patients were calculated as 80.6 and 70.6%, respectively. CONCLUSIONS In our study, we created prediction models based on radiomic analysis of 18 F-FDG PET/CT images. Texture analysis with machine learning algorithms is a noninvasive method that can be useful in the differentiation of infection and malignancy in consolidating lung lesions in the clinical setting.
Collapse
|
8
|
Spadarella G, Stanzione A, Akinci D'Antonoli T, Andreychenko A, Fanni SC, Ugga L, Kotter E, Cuocolo R. Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol 2023; 33:1884-1894. [PMID: 36282312 PMCID: PMC9935718 DOI: 10.1007/s00330-022-09187-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna Andreychenko
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Healthcare Department, Moscow, Russia
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elmar Kotter
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194838. [PMID: 36230761 PMCID: PMC9563455 DOI: 10.3390/cancers14194838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: Prediction of treatment response to androgen deprivation therapy (ADT) prior to treatment initiation remains difficult. This study was undertaken to investigate whether 68Ga-PSMA-11 PET/CT features extracted from different radiomic zones within the prostate gland might predict response to ADT in patients with advanced prostate cancer (PCa). Methods: A total of 35 patients with prostate adenocarcinoma underwent two 68Ga-PSMA-11 PET/CT scans—termed PET-1 and PET-2—before and after 3 months of ADT, respectively. The prostate was divided into three radiomic zones, with zone-1 being the metabolic tumor zone, zone-2 the proximal peripheral tumor zone, and zone-3 the extended peripheral tumor zone. Patients in the response group were those who showed a reduction ratio > 30% for PET-derived parameters measured at PET-1 and PET-2. The remaining patients were classified as non-responders. Results: Seven features (glcm_idmn, glcm_idn, glcm_imc1, ngtdm_Contrast, glrlm_rln, gldm_dn, and shape_MeshVolume) from zone-1, two features (gldm_sdlgle and shape_MinorAxisLength) from zone-2, and two features (diagnostics_Mask-interpolated_Minimum and shape_Sphericity) from zone-3 successfully distinguished responders from non-responders to ADT. One predictive feature (shape_SurfaceVolumeRatio) was consistently identified in all of the three zones. Conclusions: this study demonstrates the potential usefulness of radiomic features extracted from different prostatic zones in distinguishing responders from non-responders prior to ADT initiation.
Collapse
|