1
|
Rajabi P, Rezakhaniha B, Galougahi MHK, Mohammadimehr M, Sharifnia H, Pakzad R, Niroomand H. Unveiling the diagnostic potential of diffusion kurtosis imaging and intravoxel incoherent motion for detecting and characterizing prostate cancer: a meta-analysis. Abdom Radiol (NY) 2025; 50:319-335. [PMID: 39083068 DOI: 10.1007/s00261-024-04454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE This study aims to assess the diagnostic capabilities of Diffusion Kurtosis Imaging (DKI) and Intravoxel Incoherent Motion (IVIM) in prostate cancer (PCa) detection and characterization. MATERIALS A comprehensive search was conducted across PubMed, Scopus, Web of Science, and the Cochrane Library for articles published up to September 10, 2023, that evaluated the diagnostic efficacy of MD, MK, Dt, f, and Dp parameters. Data were pooled using a bivariate mixed-effects regression model and analyzed with R software. RESULTS In total, 27 studies were included. The analysis revealed distinct diagnostic efficacies for DKI and IVIM. In the overall model, sensitivity and specificity were 0.807 and 0.797, respectively, with prospective studies showing higher specificity (0.858, p = 0.024). The detection model yielded increased sensitivity (0.845) and specificity (0.812), with DKI outperforming IVIM in both metrics (sensitivity: 0.87, p = 0.043; specificity: 0.837, p = 0.26); MD had high sensitivity (0.88) and specificity (0.82), while MK's specificity was significantly higher (0.854, p = 0.04); Dp's sensitivity was significantly lower (0.64, p = 0.016). In characterization, sensitivity and specificity were 0.708 and 0.735, respectively, with no significant differences between DKI and IVIM or Gleason Scores; MK had higher sensitivity (0.78, p = 0.039), and f's sensitivity was significantly lower (0.51, p = 0.019). CONCLUSION In summary, the study underscores DKI's enhanced diagnostic accuracy over IVIM in detecting PCa, with MK standing out for its precision. Conversely, Dp and f lag in diagnostic performance. Despite these promising results, the study highlights the imperative for standardized protocols and study designs to achieve reliable and consistent outcomes.
Collapse
Affiliation(s)
- Pouria Rajabi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bijan Rezakhaniha
- Department of Urology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mojgan Mohammadimehr
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - Hesam Sharifnia
- Department of Health Management and Economics, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Roshanak Pakzad
- Department of Otorhinolaryngology-Head and Neck Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Niroomand
- Trauma Research Center, AJA University of Medical Sciences, Shahid Etemadzadeh Street, Fatemi Street West, Tehran, Iran.
| |
Collapse
|
2
|
Margolis DJA, Chatterjee A, deSouza NM, Fedorov A, Fennessy FM, Maier SE, Obuchowski N, Punwani S, Purysko A, Rakow-Penner R, Shukla-Dave A, Tempany CM, Boss M, Malyarenko D. Quantitative Prostate MRI, From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024:10.2214/AJR.24.31715. [PMID: 39356481 PMCID: PMC11961719 DOI: 10.2214/ajr.24.31715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.
Collapse
Affiliation(s)
| | | | - Nandita M deSouza
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Andriy Fedorov
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Stephan E Maier
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | - Andrei Purysko
- Department of Radiology, Cleveland Clinic, Cleveland, OH
| | | | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | | |
Collapse
|
3
|
Malyarenko D, Ono S, Lynch TJE, Swanson SD. Technical note: hydrogel-based mimics of prostate cancer with matched relaxation, diffusion and kurtosis for validating multi-parametric MRI. Med Phys 2024; 51:3590-3596. [PMID: 38128027 PMCID: PMC11138133 DOI: 10.1002/mp.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Protocol standardization and optimization for clinical translation of emerging quantitative multiparametric (mp)MRI biomarkers of high-risk prostate cancer requires imaging references that mimic realistic tissue value combinations for bias assessment in derived relaxation and diffusion parameters. PURPOSE This work aimed to develop a novel class of hydrogel-based synthetic materials with simultaneously controlled quantitative relaxation, diffusion, and kurtosis parameters that mimic in vivo prostate value combinations in the same spatial compartment and allow stable assemblies of adjacent structures. METHODS A set of materials with tunable T2, diffusion, and kurtosis were assembled to create quantitative biomimetic (mp)MRI references. T2 was controlled with variable agarose concentration, monoexponential diffusion by polyvinylpyrrolidone (PVP), and kurtosis by addition of lamellar vesicles. The materials were mechanically stabilized by UV cross-linked polyacrylamide gels (PAG) to allow biomimetic morphologies. The reference T2 were measured on a 3T scanner using multi-echo CPMG, and diffusion kurtosis-with multi-b DWI. RESULTS Agarose concentration controls T2 values which are nominally independent of PVP or vesicle concentration. For agarose PVP hydrogels, monoexponential diffusion values are a function of PVP concentration and independent of agarose concentration. Compared to free vesicles, for agarose-PAG combined with vesicles, diffusion was predominantly controlled by vesicles and PAG, while kurtosis was affected by agarose and vesicle concentration. Both hydrogel classes achieved image voxel parameter values (T2, Da, Ka) for relaxation (T2: 65-255 ms), apparent diffusion (Da: 0.8-1.7 μm2/ms), and kurtosis (Ka: 0.5-1.25) within the target literature ranges for normal prostate zones and cancer lesions. Relaxation and diffusion parameters remained stable for over 6 months for layered material assemblies. CONCLUSION A stable biomimetic mpMR reference based on hydrogels has been developed with a range of multi-compartment diffusion and relaxation parameter combinations observed in cancerous and healthy prostate tissue.
Collapse
Affiliation(s)
- Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shigeto Ono
- Computerized Imaging Reference Systems (Sun Nuclear), Mirion Technologies Inc., Norfolk, VA 23513, USA
| | - Ted J. E. Lynch
- Computerized Imaging Reference Systems (Sun Nuclear), Mirion Technologies Inc., Norfolk, VA 23513, USA
| | - Scott D. Swanson
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Trecarten S, Sunnapwar AG, Clarke GD, Liss MA. Prostate MRI for the detection of clinically significant prostate cancer: Update and future directions. Adv Cancer Res 2024; 161:71-118. [PMID: 39032957 DOI: 10.1016/bs.acr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW In recent decades, there has been an increasing role for magnetic resonance imaging (MRI) in the detection of clinically significant prostate cancer (csPC). The purpose of this review is to provide an update and outline future directions for the role of MRI in the detection of csPC. RECENT FINDINGS In diagnosing clinically significant prostate cancer pre-biopsy, advances include our understanding of MRI-targeted biopsy, the role of biparametric MRI (non-contrast) and changing indications, for example the role of MRI in screening for prostate cancer. Furthermore, the role of MRI in identifying csPC is maturing, with emphasis on standardization of MRI reporting in active surveillance (PRECISE), clinical staging (EPE grading, MET-RADS-P) and recurrent disease (PI-RR, PI-FAB). Future directions of prostate MRI in detecting csPC include quality improvement, artificial intelligence and radiomics, positron emission tomography (PET)/MRI and MRI-directed therapy. SUMMARY The utility of MRI in detecting csPC has been demonstrated in many clinical scenarios, initially from simply diagnosing csPC pre-biopsy, now to screening, active surveillance, clinical staging, and detection of recurrent disease. Continued efforts should be undertaken not only to emphasize the reporting of prostate MRI quality, but to standardize reporting according to the appropriate clinical setting.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, UT Health San Antonio, San Antonio, TX, United States
| | - Abhijit G Sunnapwar
- Department of Radiology, UT Health San Antonio, San Antonio, TX, United States
| | - Geoffrey D Clarke
- Department of Radiology, UT Health San Antonio, San Antonio, TX, United States
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
5
|
Prieto-González LS, Agulles-Pedrós L. Exploring the Potential of Machine Learning Algorithms to Improve Diffusion Nuclear Magnetic Resonance Imaging Models Analysis. J Med Phys 2024; 49:189-202. [PMID: 39131437 PMCID: PMC11309135 DOI: 10.4103/jmp.jmp_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose This paper explores different machine learning (ML) algorithms for analyzing diffusion nuclear magnetic resonance imaging (dMRI) models when analytical fitting shows restrictions. It reviews various ML techniques for dMRI analysis and evaluates their performance on different b-values range datasets, comparing them with analytical methods. Materials and Methods After standard fitting for reference, four sets of diffusion-weighted nuclear magnetic resonance images were used to train/test various ML algorithms for prediction of diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), and kurtosis (K). ML classification algorithms, including extra-tree classifier (ETC), logistic regression, C-support vector, extra-gradient boost, and multilayer perceptron (MLP), were used to determine the existence of diffusion parameters (D, D*, f, and K) within single voxels. Regression algorithms, including linear regression, polynomial regression, ridge, lasso, random forest (RF), elastic-net, and support-vector machines, were used to estimate the value of the diffusion parameters. Performance was evaluated using accuracy (ACC), area under the curve (AUC) tests, and cross-validation root mean square error (RMSECV). Computational timing was also assessed. Results ETC and MLP were the best classifiers, with 94.1% and 91.7%, respectively, for the ACC test and 98.7% and 96.3% for the AUC test. For parameter estimation, RF algorithm yielded the most accurate results The RMSECV percentages were: 8.39% for D, 3.57% for D*, 4.52% for f, and 3.53% for K. After the training phase, the ML methods demonstrated a substantial decrease in computational time, being approximately 232 times faster than the conventional methods. Conclusions The findings suggest that ML algorithms can enhance the efficiency of dMRI model analysis and offer new perspectives on the microstructural and functional organization of biological tissues. This paper also discusses the limitations and future directions of ML-based dMRI analysis.
Collapse
Affiliation(s)
| | - Luis Agulles-Pedrós
- Department of Physics, Medical Physics Group, National University of Colombia, Campus Bogotá, Bogotá, Colombia
| |
Collapse
|
6
|
Fukumura Y, Kuroda M, Yoshida S, Nakamura Y, Nakamitsu Y, Al-Hammad WE, Kuroda K, Kamizaki R, Shimizu Y, Tanabe Y, Sugimoto K, Oita M, Sugianto I, Barham M, Tekiki N, Kamaruddin NN, Yanagi Y, Asaumi J. Characteristic Mean Kurtosis Values in Simple Diffusion Kurtosis Imaging of Dentigerous Cysts. Diagnostics (Basel) 2023; 13:3619. [PMID: 38132203 PMCID: PMC10742570 DOI: 10.3390/diagnostics13243619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
We evaluated the usefulness of simple diffusion kurtosis (SD) imaging, which was developed to generate diffusion kurtosis images simultaneously with an apparent diffusion coefficient (ADC) map for 27 cystic disease lesions in the head and neck region. The mean kurtosis (MK) and ADC values were calculated for the cystic space. The MK values were dentigerous cyst (DC): 0.74, odontogenic keratocyst (OKC): 0.86, ranula (R): 0.13, and mucous cyst (M): 0, and the ADC values were DC: 1364 × 10-6 mm2/s, OKC: 925 × 10-6 mm2/s, R: 2718 × 10-6 mm2/s, and M: 2686 × 10-6 mm2/s. The MK values of DC and OKC were significantly higher than those of R and M, whereas their ADC values were significantly lower. One reason for the characteristic signal values in diffusion-weighted images of DC may be related to content components such as fibrous tissue and exudate cells. When imaging cystic disease in the head and neck region using SD imaging, the maximum b-value setting at the time of imaging should be limited to approximately 1200 s/mm2 for accurate MK value calculation. This study is the first to show that the MK values of DC are characteristically higher than those of other cysts.
Collapse
Affiliation(s)
- Yuka Fukumura
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| | - Masahiro Kuroda
- Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Suzuka Yoshida
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| | - Yoshihide Nakamura
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| | - Yuki Nakamitsu
- Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Wlla E. Al-Hammad
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Kazuhiro Kuroda
- Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
- Department of Health and Welfare Science, Graduate School of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Ryo Kamizaki
- Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yudai Shimizu
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| | - Yoshinori Tanabe
- Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kohei Sugimoto
- Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
- Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University, Okayama 770-8558, Japan
| | - Masataka Oita
- Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University, Okayama 770-8558, Japan
| | - Irfan Sugianto
- Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University, Sulawesi 90245, Indonesia
| | - Majd Barham
- Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Nouha Tekiki
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| | - Nurul N. Kamaruddin
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Department of Dental Materials, Faculty of dentistry, Hasanuddin University, Sulawesi 90245, Indonesia
| | - Yoshinobu Yanagi
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| | - Junichi Asaumi
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Y.F.)
| |
Collapse
|