1
|
Chowdary S, Purushotaman SB. An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images. NETWORK (BRISTOL, ENGLAND) 2024:1-39. [PMID: 38975771 DOI: 10.1080/0954898x.2024.2373127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.
Collapse
Affiliation(s)
- Shalini Chowdary
- ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Trivizakis E, Koutroumpa NM, Souglakos J, Karantanas A, Zervakis M, Marias K. Radiotranscriptomics of non-small cell lung carcinoma for assessing high-level clinical outcomes using a machine learning-derived multi-modal signature. Biomed Eng Online 2023; 22:125. [PMID: 38102586 PMCID: PMC10724973 DOI: 10.1186/s12938-023-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Multi-omics research has the potential to holistically capture intra-tumor variability, thereby improving therapeutic decisions by incorporating the key principles of precision medicine. The purpose of this study is to identify a robust method of integrating features from different sources, such as imaging, transcriptomics, and clinical data, to predict the survival and therapy response of non-small cell lung cancer patients. METHODS 2996 radiomics, 5268 transcriptomics, and 8 clinical features were extracted from the NSCLC Radiogenomics dataset. Radiomics and deep features were calculated based on the volume of interest in pre-treatment, routine CT examinations, and then combined with RNA-seq and clinical data. Several machine learning classifiers were used to perform survival analysis and assess the patient's response to adjuvant chemotherapy. The proposed analysis was evaluated on an unseen testing set in a k-fold cross-validation scheme. Score- and concatenation-based multi-omics were used as feature integration techniques. RESULTS Six radiomics (elongation, cluster shade, entropy, variance, gray-level non-uniformity, and maximal correlation coefficient), six deep features (NasNet-based activations), and three transcriptomics (OTUD3, SUCGL2, and RQCD1) were found to be significant for therapy response. The examined score-based multi-omic improved the AUC up to 0.10 on the unseen testing set (0.74 ± 0.06) and the balance between sensitivity and specificity for predicting therapy response for 106 patients, resulting in less biased models and improving upon the either highly sensitive or highly specific single-source models. Six radiomics (kurtosis, GLRLM- and GLSZM-based non-uniformity from images with no filtering, biorthogonal, and daubechies wavelets), seven deep features (ResNet-based activations), and seven transcriptomics (ELP3, ZZZ3, PGRMC2, TRAK1, ATIC, USP7, and PNPLA2) were found to be significant for the survival analysis. Accordingly, the survival analysis for 115 patients was also enhanced up to 0.20 by the proposed score-based multi-omics in terms of the C-index (0.79 ± 0.03). CONCLUSIONS Compared to single-source models, multi-omics integration has the potential to improve prediction performance, increase model stability, and reduce bias for both treatment response and survival analysis.
Collapse
Affiliation(s)
- Eleftherios Trivizakis
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Greece.
- Medical School, University of Crete, 71003, Heraklion, Greece.
| | - Nikoletta-Maria Koutroumpa
- Medical School, University of Crete, 71003, Heraklion, Greece
- School of Electrical and Computer Engineering, Technical University of Crete, 73100, Chania, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 71003, Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71500, Heraklion, Greece
| | - Apostolos Karantanas
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Greece
- Department of Radiology, Medical School, University of Crete, 71003, Heraklion, Greece
| | - Michalis Zervakis
- School of Electrical and Computer Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410, Heraklion, Greece
| |
Collapse
|
3
|
Dai X, Han YX, Shen QY, Tang H, Cheng LZ, Yang FP, Wei WH, Yang SM. Effect of Food Restriction on Food Grinding in Brandt's Voles. Animals (Basel) 2023; 13:3424. [PMID: 37958179 PMCID: PMC10647212 DOI: 10.3390/ani13213424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Food grinding is supposed to be influenced by multiple factors. However, how those factors affecting this behavior remain unclear. In this study, we investigated the effect of food restriction on food grinding in Brandt's voles (Lasiopodomys brandtii), as well as the potential role of the gut microbiota in this process, through a comparison of the variations between voles with different food supplies. Food restriction reduced the relative amount of ground food to a greater extent than it lowered the relative food consumption, and altered the abundance of Staphylococcus, Aerococcus, Jeotgalicoccus, and Un--s-Clostridiaceae bacterium GM1. Fecal acetate content for the 7.5 g-food supply group was lower than that for the 15 g-food supply group. Our study indicated that food restriction could effectively inhibit food grinding. Further, Un--s-Clostridiaceae bacterium GM1 abundance, Aerococcus abundance, and acetate content were strongly related to food grinding. Variations in gut microbial abundance and short-chain fatty acid content induced by food restriction likely promote the inhibition of food grinding. These results could potentially provide guidance for reducing food waste during laboratory rodent maintenance.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Yu-Xuan Han
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Qiu-Yi Shen
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Hao Tang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Li-Zhi Cheng
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Feng-Ping Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| |
Collapse
|
4
|
Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, Li X, Yang Z. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med 2023; 21:598. [PMID: 37674169 PMCID: PMC10481579 DOI: 10.1186/s12967-023-04437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
The advent of immunotherapy, a groundbreaking advancement in cancer treatment, has given rise to the prominence of the tumor microenvironment (TME) as a critical area of research. The clinical implications of an improved understanding of the TME are significant and far-reaching. Radiomics has been increasingly utilized in the comprehensive assessment of the TME and cancer prognosis. Similarly, the advancement of pathomics, which is based on pathological images, can offer additional insights into the panoramic view and microscopic information of tumors. The combination of pathomics and radiomics has revolutionized the concept of a "digital biopsy". As genomics and transcriptomics continue to evolve, integrating radiomics with genomic and transcriptomic datasets can offer further insights into tumor and microenvironment heterogeneity and establish correlations with biological significance. Therefore, the synergistic analysis of digital image features (radiomics, pathomics) and genetic phenotypes (genomics) can comprehensively decode and characterize the heterogeneity of the TME as well as predict cancer prognosis. This review presents a comprehensive summary of the research on important radiomics biomarkers for predicting the TME, emphasizing the interplay between radiomics, genomics, transcriptomics, and pathomics, as well as the application of multiomics in decoding the TME and predicting cancer prognosis. Finally, we discuss the challenges and opportunities in multiomics research. In conclusion, this review highlights the crucial role of radiomics and multiomics associations in the assessment of the TME and cancer prognosis. The combined analysis of radiomics, pathomics, genomics, and transcriptomics is a promising research direction with substantial research significance and value for comprehensive TME evaluation and cancer prognosis assessment.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of, Fudan University, Shanghai, 200011, China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Jianwei Luo
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junqing Xi
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
5
|
Zhang Y, Xu Z, Wu S, Zhu T, Hong X, Chi Z, Malla R, Jiang J, Huang Y, Xu Q, Wang Z, Zhang Y. Construction of 3D and 2D contrast-enhanced CT radiomics for prediction of CGB3 expression level and clinical prognosis in bladder cancer. Heliyon 2023; 9:e20335. [PMID: 37809854 PMCID: PMC10560067 DOI: 10.1016/j.heliyon.2023.e20335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Objective The purpose of this study was to construct a 3D and 2D contrast-enhanced computed tomography (CECT) radiomics model to predict CGB3 levels and assess its prognostic abilities in bladder cancer (Bca) patients. Methods Transcriptome data and CECT images of Bca patients were downloaded from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Clinical data of 43 cases from TCGA and TCIA were used for radiomics model evaluation. The Volume of interest (VOI) (3D) and region of interest (ROI) (2D) radiomics features were extracted. For the construction of predicting radiomics models, least absolute shrinkage and selection operator regression were used, and the filtered radiomics features were fitted using the logistic regression algorithm (LR). The model's effectiveness was measured using 10-fold cross-validation and the area under the receiver operating characteristic curve (AUC of ROC). Result CGB3 was a differential expressed prognosis-related gene and involved in the immune response process of plasma cells and T cell gamma delta. The high levels of CGB3 are a risk element for overall survival (OS). The AUCs of VOI and ROI radiomics models in the training set were 0.841 and 0.776, while in the validation set were 0.815 and 0.754, respectively. The Delong test revealed that the AUCs of the two models were not statistically different, and both models had good predictive performance. Conclusion The CGB3 expression level is an important prognosis factor for Bca patients. Both 3D and 2D CECT radiomics are effective in predicting CGB3 expression levels.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Zhuangyong Xu
- Department of Radiology,Shantou Central Hospital, Shantou, PR China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Tianxiang Zhu
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Zepai Chi
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Rujan Malla
- Department of Radiology, Nepal Medical Collage Teaching Hospital, Kathmandu, Nepal
| | - Jingqi Jiang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Yi Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| |
Collapse
|