1
|
Chilaca-Rosas MF, Contreras-Aguilar MT, Pallach-Loose F, Altamirano-Bustamante NF, Salazar-Calderon DR, Revilla-Monsalve C, Heredia-Gutiérrez JC, Conde-Castro B, Medrano-Guzmán R, Altamirano-Bustamante MM. Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management. Sci Rep 2025; 15:16113. [PMID: 40341184 PMCID: PMC12062216 DOI: 10.1038/s41598-025-98058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.
Collapse
Affiliation(s)
- María Fátima Chilaca-Rosas
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Manuel Tadeo Contreras-Aguilar
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Federico Pallach-Loose
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | | | - David Rafael Salazar-Calderon
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Juan Carlos Heredia-Gutiérrez
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Benjamin Conde-Castro
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Rafael Medrano-Guzmán
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico.
| |
Collapse
|
2
|
Yu M, Liu J, Zhou W, Gu X, Yu S. MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival. Sci Rep 2025; 15:7433. [PMID: 40032983 PMCID: PMC11876340 DOI: 10.1038/s41598-025-90128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene expression and clinicopathological data, was downloaded from online database. Kaplan-Meier survival curves, univariate and multivariate COX analyses, and time-dependent receiver operating characteristic were used to assess the prognostic value of CD44. Following the screening of radiomic features using repeat least absolute shrinkage and selection operator, two radiomics models were constructed utilizing logistic regression and support vector machine for validation purposes. The results indicated that CD44 protein levels were higher in HGG compared to normal brain tissues, and CD44 expression emerged as an independent biomarker of diminished overall survival (OS) in patients with HGG. Moreover, two predictive models based on seven radiomic features were built to predict CD44 expression levels in HGG, achieving areas under the curves (AUC) of 0.809 and 0.806, respectively. Calibration and decision curve analysis validated the fitness of the models. Notably, patients with high radiomic scores presented worse OS (p < 0.001). In summary, our results indicated that the radiomics models effectively differentiate CD44 expression level and OS in patients with HGG.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Department of Medical Affairs, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian, 116033, People's Republic of China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
3
|
Pacchiano F, Tortora M, Doneda C, Izzo G, Arrigoni F, Ugga L, Cuocolo R, Parazzini C, Righini A, Brunetti A. Radiomics and artificial intelligence applications in pediatric brain tumors. World J Pediatr 2024; 20:747-763. [PMID: 38935233 PMCID: PMC11402857 DOI: 10.1007/s12519-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity and mortality. While both morphological and non-morphological magnetic resonance imaging techniques can give important information concerning tumor characterization, grading, and patient prognosis, increasing evidence in recent years has highlighted the need for personalized treatment and the development of quantitative imaging parameters that can predict the nature of the lesion and its possible evolution. For this purpose, radiomics and the use of artificial intelligence software, aimed at obtaining valuable data from images beyond mere visual observation, are gaining increasing importance. This brief review illustrates the current state of the art of this new imaging approach and its contributions to understanding CNS tumors in children. DATA SOURCES We searched the PubMed, Scopus, and Web of Science databases using the following key search terms: ("radiomics" AND/OR "artificial intelligence") AND ("pediatric AND brain tumors"). Basic and clinical research literature related to the above key research terms, i.e., studies assessing the key factors, challenges, or problems of using radiomics and artificial intelligence in pediatric brain tumors management, was collected. RESULTS A total of 63 articles were included. The included ones were published between 2008 and 2024. Central nervous tumors are crucial in pediatrics due to their high frequency and impact on disease and treatment. MRI serves as the cornerstone of neuroimaging, providing cellular, vascular, and functional information in addition to morphological features for brain malignancies. Radiomics can provide a quantitative approach to medical imaging analysis, aimed at increasing the information obtainable from the pixels/voxel grey-level values and their interrelationships. The "radiomic workflow" involves a series of iterative steps for reproducible and consistent extraction of imaging data. These steps include image acquisition for tumor segmentation, feature extraction, and feature selection. Finally, the selected features, via training predictive model (CNN), are used to test the final model. CONCLUSIONS In the field of personalized medicine, the application of radiomics and artificial intelligence (AI) algorithms brings up new and significant possibilities. Neuroimaging yields enormous amounts of data that are significantly more than what can be gained from visual studies that radiologists can undertake on their own. Thus, new partnerships with other specialized experts, such as big data analysts and AI specialists, are desperately needed. We believe that radiomics and AI algorithms have the potential to move beyond their restricted use in research to clinical applications in the diagnosis, treatment, and follow-up of pediatric patients with brain tumors, despite the limitations set out.
Collapse
Affiliation(s)
- Francesco Pacchiano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Department of Head and Neck, Neuroradiology Unit, AORN Moscati, Avellino, Italy.
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Filippo Arrigoni
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Cecilia Parazzini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Andrea Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
4
|
Lu L, Dai T, Zhao Y, Qu H, Sun QA, Xia H, Wang W, Li G. The value of MRI-based radiomics for evaluating early parotid gland injury in primary Sjögren's syndrome. Clin Rheumatol 2024; 43:1675-1682. [PMID: 38538907 DOI: 10.1007/s10067-024-06935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE This study aimed to evaluate the value of machine learning models (ML) based on MRI radiomics in diagnosing early parotid gland injury in primary Sjögren's syndrome (pSS). METHODS A total of 164 patients (114 in the training cohort and 50 in the testing cohort) with pSS (n=82) or healthy controls (HC) (n=82) were enrolled. Itksnap software was used to perform two-dimensional segmentation of the bilateral parotid glands on T1-weighted (T1WI) and fat-suppressed T2-weighted imaging (fs-T2WI) images. A total of 1548 texture features of the parotid glands were extracted using radiomics software. A radiomics score (Radscore) was constructed and calculated. A t-test was used to compare the Radscore between the two groups. Finally, five machine learning models were trained and tested to identify early pSS parotid injury, and the performance of the machine learning models was evaluated by calculating the acceptance operating curve (ROC) and other parameters. RESULTS The Radscores between the pSS and HC groups showed significant statistical differences (p<0.001). Among the five machine learning models, the Extra Trees Classifier (ETC) model performed high predictive efficacy in identifying early pSS parotid injury, with an AUC of 0.87 in the testing set. CONCLUSION MRI radiomics-based machine learning models can effectively diagnose early parotid gland injury in primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Lu Lu
- Medical College, Yangzhou University, Yangzhou, 255000, China
| | - Tiantian Dai
- Medical College, Yangzhou University, Yangzhou, 255000, China
| | - Yi Zhao
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 255000, China
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 255000, China
| | - Qi An Sun
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 255000, China
| | - Hongyi Xia
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 255000, China
| | - Wei Wang
- Medical College, Yangzhou University, Yangzhou, 255000, China.
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 255000, China.
| | - Guoqing Li
- Medical College, Yangzhou University, Yangzhou, 255000, China
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 255000, China
| |
Collapse
|
5
|
Fan B, Fan B, Sun N, Zou H, Gu X. A radiomics model to predict γδ T-cell abundance and overall survival in head and neck squamous cell carcinoma. FASEB J 2024; 38:e23529. [PMID: 38441524 DOI: 10.1096/fj.202301353rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
γδ T cells are becoming increasingly popular because of their attractive potential for antitumor immunotherapy. However, the role and assessment of γδ T cells in head and neck squamous cell carcinoma (HNSCC) are not well understood. We aimed to explore the prognostic value of γδ T cell and predict its abundance using a radiomics model. Computer tomography images with corresponding gene expression data and clinicopathological data were obtained from online databases. After outlining the volumes of interest manually, the radiomic features were screened using maximum melevance minimum redundancy and recursive feature elimination algorithms. A radiomics model was developed to predict γδ T-cell abundance using gradient boosting machine. Kaplan-Meier survival curves and univariate and multivariate Cox regression analyses were used for the survival analysis. In this study, we confirmed that γδ T-cell abundance was an independent predictor of favorable overall survival (OS) in patients with HNSCC. Moreover, a radiomics model was built to predict the γδ T-cell abundance level (the areas under the operating characteristic curves of 0.847 and 0.798 in the training and validation sets, respectively). The calibration and decision curves analysis demonstrated the fitness of the model. The high radiomic score was an independent protective factor for OS. Our results indicated that γδ T-cell abundance was a promising prognostic predictor in HNSCC, and the radiomics model could discriminate its abundance levels and predict OS. The noninvasive radiomics model provided a potentially powerful prediction tool to aid clinical judgment and antitumor immunotherapy.
Collapse
Affiliation(s)
- Binna Fan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Binting Fan
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Chilaca-Rosas MF, Contreras-Aguilar MT, Garcia-Lezama M, Salazar-Calderon DR, Vargas-Del-Angel RG, Moreno-Jimenez S, Piña-Sanchez P, Trejo-Rosales RR, Delgado-Martinez FA, Roldan-Valadez E. Identification of Radiomic Signatures in Brain MRI Sequences T1 and T2 That Differentiate Tumor Regions of Midline Gliomas with H3.3K27M Mutation. Diagnostics (Basel) 2023; 13:2669. [PMID: 37627927 PMCID: PMC10453217 DOI: 10.3390/diagnostics13162669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Radiomics refers to the acquisition of traces of quantitative features that are usually non-perceptible to human vision and are obtained from different imaging techniques and subsequently transformed into high-dimensional data. Diffuse midline gliomas (DMG) represent approximately 20% of pediatric CNS tumors, with a median survival of less than one year after diagnosis. We aimed to identify which radiomics can discriminate DMG tumor regions (viable tumor and peritumoral edema) from equivalent midline normal tissue (EMNT) in patients with the positive H3.F3K27M mutation, which is associated with a worse prognosis. PATIENTS AND METHODS This was a retrospective study. From a database of 126 DMG patients (children, adolescents, and young adults), only 12 had H3.3K27M mutation and available brain magnetic resonance DICOM file. The MRI T1 post-gadolinium and T2 sequences were uploaded to LIFEx software to post-process and extract radiomic features. Statistical analysis included normal distribution tests and the Mann-Whitney U test performed using IBM SPSS® (Version 27.0.0.1, International Business Machines Corp., Armonk, NY, USA), considering a significant statistical p-value ≤ 0.05. RESULTS EMNT vs. Tumor: From the T1 sequence 10 radiomics were identified, and 14 radiomics from the T2 sequence, but only one radiomic identified viable tumors in both sequences (p < 0.05) (DISCRETIZED_Q1). Peritumoral edema vs. EMNT: From the T1 sequence, five radiomics were identified, and four radiomics from the T2 sequence. However, four radiomics could discriminate peritumoral edema in both sequences (p < 0.05) (CONVENTIONAL_Kurtosis, CONVENTIONAL_ExcessKurtosis, DISCRETIZED_Kurtosis, and DISCRETIZED_ExcessKurtosis). There were no radiomics useful for distinguishing tumor tissue from peritumoral edema in both sequences. CONCLUSIONS Less than 5% of the radiomic characteristics identified tumor regions of medical-clinical interest in T1 and T2 sequences of conventional magnetic resonance imaging. The first-order and second-order radiomic features suggest support to investigators and clinicians for careful evaluation for diagnosis, patient classification, and multimodality cancer treatment planning.
Collapse
Affiliation(s)
- Maria-Fatima Chilaca-Rosas
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | - Manuel-Tadeo Contreras-Aguilar
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | - Melissa Garcia-Lezama
- Directorate of Research, Hospital General de Mexico Dr Eduardo Liceaga, Mexico City 06720, Mexico;
| | - David-Rafael Salazar-Calderon
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | | | - Sergio Moreno-Jimenez
- Neurological Center, Neurosurgery Department of National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico;
- Neurological Center, Neurosurgery Department of American British Cowdray Medical Center, Mexico City 01120, Mexico
| | - Patricia Piña-Sanchez
- Oncology Diagnostic, Unidad de Investigacion Medica en Enfermedades Oncologicas U.I.M.E.O, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico;
| | - Raul-Rogelio Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico;
| | - Felipe-Alfredo Delgado-Martinez
- Magnetic Resonance Service, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ernesto Roldan-Valadez
- Directorate of Research, Hospital General de Mexico Dr Eduardo Liceaga, Mexico City 06720, Mexico;
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|