1
|
Ichikawa Y, Hasegawa D, Domae K, Nagata M, Sakuma H. Effect of Deep Learning-Based Image Reconstruction on Lesion Conspicuity of Liver Metastases in Pre- and Post-contrast Enhanced Computed Tomography. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01529-z. [PMID: 40355690 DOI: 10.1007/s10278-025-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/27/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
The purpose of this study was to investigate the utility of deep learning image reconstruction at medium and high intensity levels (DLIR-M and DLIR-H, respectively) for better delineation of liver metastases in pre-contrast and post-contrast CT, compared to conventional hybrid iterative reconstruction (IR) methods. Forty-one patients with liver metastases who underwent abdominal CT were studied. The raw data were reconstructed with three different algorithms: hybrid IR (ASiR-V 50%), DLIR-M (TrueFildelity-M), and DLIR-H (TrueFildelity-H). Three experienced radiologists independently rated the lesion conspicuity of liver metastases on a qualitative 5-point scale (score 1 = very poor; score 5 = excellent). The observers also selected each image series for pre- and post-contrast CT per patient that was considered most preferable for liver metastases assessment. For pre-contrast CT, lesion conspicuity scores for DLIR-H and DLIR-M were significantly higher than those for hybrid IR for two of the three observers, while there was no significant difference for one observer. For post-contrast CT, the lesion conspicuity scores for DLIR-H images were significantly higher than those for DLIR-M images for two of the three observers on post-contrast CT (Observer 1: DLIR-H, 4.3 ± 0.8 vs. DLIR-M, 3.9 ± 0.9, p = 0.0006; Observer 3: DLIR-H, 4.6 ± 0.6 vs. DLIR-M, 4.3 ± 0.6, p = 0.0013). For post-contrast CT, all observers most often selected DLIR-H as the best reconstruction method for the diagnosis of liver metastases. However, in the pre-contrast CT, there was variation among the three observers in determining the most preferred image reconstruction method, and DLIR was not necessarily preferred over hybrid IR for the diagnosis of liver metastases.
Collapse
Affiliation(s)
- Yasutaka Ichikawa
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Daisuke Hasegawa
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kensuke Domae
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Motonori Nagata
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Mileto A, Yu L, Revels JW, Kamel S, Shehata MA, Ibarra-Rovira JJ, Wong VK, Roman-Colon AM, Lee JM, Elsayes KM, Jensen CT. State-of-the-Art Deep Learning CT Reconstruction Algorithms in Abdominal Imaging. Radiographics 2024; 44:e240095. [PMID: 39612283 PMCID: PMC11618294 DOI: 10.1148/rg.240095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 12/01/2024]
Abstract
The implementation of deep neural networks has spurred the creation of deep learning reconstruction (DLR) CT algorithms. DLR CT techniques encompass a spectrum of deep learning-based methodologies that operate during the different steps of the image creation, prior to or after the traditional image formation process (eg, filtered backprojection [FBP] or iterative reconstruction [IR]), or alternatively by fully replacing FBP or IR techniques. DLR algorithms effectively facilitate the reduction of image noise associated with low photon counts from reduced radiation dose protocols. DLR methods have emerged as an effective solution to ameliorate limitations observed with prior CT image reconstruction algorithms, including FBP and IR algorithms, which are not able to preserve image texture and diagnostic performance at low radiation dose levels. An additional advantage of DLR algorithms is their high reconstruction speed, hence targeting the ideal triad of features for a CT image reconstruction (ie, the ability to consistently provide diagnostic-quality images and achieve radiation dose imaging levels as low as reasonably possible, with high reconstruction speed). An accumulated body of evidence supports the clinical use of DLR algorithms in abdominal imaging across multiple CT imaging tasks. The authors explore the technical aspects of DLR CT algorithms and examine various approaches to image synthesis in DLR creation. The clinical applications of DLR algorithms are highlighted across various abdominal CT imaging domains, with emphasis on the supporting evidence for diverse clinical tasks. An overview of the current limitations of and outlook for DLR algorithms for CT is provided. ©RSNA, 2024.
Collapse
Affiliation(s)
- Achille Mileto
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Lifeng Yu
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Jonathan W. Revels
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Serageldin Kamel
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Mostafa A. Shehata
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Juan J. Ibarra-Rovira
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Vincenzo K. Wong
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Alicia M. Roman-Colon
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Jeong Min Lee
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Khaled M. Elsayes
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Corey T. Jensen
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| |
Collapse
|
3
|
Im JY, Halliburton SS, Mei K, Perkins AE, Wong E, Roshkovan L, Sandvold OF, Liu LP, Gang GJ, Noël PB. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm. Phys Med Biol 2024; 69:115009. [PMID: 38604190 PMCID: PMC11097966 DOI: 10.1088/1361-6560/ad3dba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a commercial DLR algorithm across a wide range of radiation dose levels.Method. The lung phantom used in this study is based on a patient chest CT scan containing ground glass opacities and was fabricated using PixelPrint 3D-printing technology. The phantom was placed inside two different size extension rings to mimic a small- and medium-sized patient and was scanned on a conventional CT scanner at exposures between 0.5 and 20 mGy. Each scan was reconstructed using filtered back projection (FBP), iterative reconstruction, and DLR at five levels of denoising. Image noise, contrast to noise ratio (CNR), root mean squared error, structural similarity index (SSIM), and multi-scale SSIM (MS SSIM) were calculated for each image.Results.DLR demonstrated superior performance compared to FBP and iterative reconstruction for all measured metrics in both phantom sizes, with better performance for more aggressive denoising levels. DLR was estimated to reduce dose by 25%-83% in the small phantom and by 50%-83% in the medium phantom without decreasing image quality for any of the metrics measured in this study. These dose reduction estimates are more conservative compared to the estimates obtained when only considering noise and CNR.Conclusion. DLR has the capability of producing diagnostic image quality at up to 83% lower radiation dose, which can improve the clinical utility and viability of lower dose CT scans. Furthermore, the PixelPrint phantom used in this study offers an improved testing environment with more realistic tissue structures compared to traditional CT phantoms, allowing for structure-based image quality evaluation beyond noise and contrast-based assessments.
Collapse
Affiliation(s)
- Jessica Y Im
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - Kai Mei
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amy E Perkins
- Philips Healthcare, Cleveland, OH, United States of America
| | - Eddy Wong
- Philips Healthcare, Cleveland, OH, United States of America
| | - Leonid Roshkovan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Olivia F Sandvold
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Leening P Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Grace J Gang
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Peter B Noël
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Tomasi S, Szilagyi KE, Barca P, Bisello F, Spagnoli L, Domenichelli S, Strigari L. A CT deep learning reconstruction algorithm: Image quality evaluation for brain protocol at decreasing dose indexes in comparison with FBP and statistical iterative reconstruction algorithms. Phys Med 2024; 119:103319. [PMID: 38422902 DOI: 10.1016/j.ejmp.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To characterise the impact of Precise Image (PI) deep learning reconstruction algorithm on image quality, compared to filtered back-projection (FBP) and iDose4 iterative reconstruction for brain computed tomography (CT) phantom images. METHODS Catphan-600 phantom was acquired with an Incisive CT scanner using a dedicated brain protocol, at six different dose levels (volume computed tomography dose index (CTDIvol): 7/14/29/49/56/67 mGy). Images were reconstructed using FBP, levels 2/5 of iDose4, and PI algorithm (Sharper/Sharp/Standard/Smooth/Smoother). Image quality was assessed by evaluating CT numbers, image histograms, noise, image non-uniformity (NU), noise power spectrum, target transfer function, and detectability index. RESULTS The five PI levels did not significantly affect the mean CT number. For a given CTDIvol using Sharper-to-Smoother levels, the spatial resolution for all the investigated materials and the detectability index increased while the noise magnitude decreased, slightly affecting noise texture. For a fixed PI level increasing the CTDIvol the detectability index increased, the noise magnitude decreased. From 29 mGy, NU values converged within 1 Hounsfield Unit from each other without a substantial improvement at higher CTDIvol values. CONCLUSIONS The improved performances of intermediate PI levels in brain protocols compared to conventional algorithms seem to suggest a potential reduction of CTDIvol.
Collapse
Affiliation(s)
- Silvia Tomasi
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Klarisa Elena Szilagyi
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizio Barca
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Francesca Bisello
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lorenzo Spagnoli
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Domenichelli
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|