1
|
Petrelli F, Rosenfeld R, Ghidini A, Celotti A, Dottorini L, Viti M, Baiocchi G, Garrone O, Tomasello G, Ghidini M. Comparative Efficacy of 21 Treatment Strategies for Resectable Pancreatic Cancer: A Network Meta-Analysis. Cancers (Basel) 2024; 16:3203. [PMID: 39335177 PMCID: PMC11429569 DOI: 10.3390/cancers16183203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The primary treatment for operable pancreatic cancer (PC) involves surgery followed by adjuvant therapy. Nevertheless, perioperative or neoadjuvant chemotherapy (CT) may be used to mitigate the likelihood of recurrence and mortality. This network meta-analysis (NMA) assesses the comparative efficacy of various treatment approaches for resectable PC. A thorough search was carried out on January 31, 2023, encompassing PubMed/MEDLINE, Cochrane Library, and Embase databases. We incorporated randomized clinical trials (RCTs) that compared surgical interventions with or without (neo)adjuvant or perioperative therapies for operable PC. We conducted a fixed-effects Bayesian NMA. We presented the effect sizes in terms of hazard ratios (HRs) for overall survival (OS) along with 95% credible intervals (95% CrIs). The treatment was deemed statistically superior when the 95% credible interval (CrI) did not encompass a null value (hazard ratio < 1). Treatment rankings were established based on the surface under the cumulative ranking curve (SUCRA). A total of 24 studies were incorporated, comparing 21 treatments with surgery in isolation. Eleven treatments showed superior efficacy compared to surgery alone, with HRs ranging from 0.38 for perioperative treatments to 0.73 for adjuvant 5-fluorouracil. After the exclusion of studies conducted in Asia, it was found that the perioperative regimen of gemcitabine combined with nab-paclitaxel was the most effective regimen (SUCRA, p = 0.99). The findings endorse the utilization of perioperative CT, especially multi-agent CT, as the favored intervention for operable PC in Western nations.
Collapse
Affiliation(s)
- Fausto Petrelli
- Oncology Unit, Oncology Department, ASST Bergamo Ovest, Piazzale Ospedale 1, 24047 Treviglio, Italy;
| | - Roberto Rosenfeld
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (R.R.); (O.G.); (M.G.)
| | | | - Andrea Celotti
- Surgery Unit, ASST Cremona, 26100 Cremona, Italy; (A.C.); (G.B.)
| | - Lorenzo Dottorini
- Oncology Unit, Oncology Department, ASST Bergamo Ovest, Piazzale Ospedale 1, 24047 Treviglio, Italy;
| | - Matteo Viti
- Surgery Unit, ASST Bergamo Ovest, 24047 Treviglio, Italy;
| | | | - Ornella Garrone
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (R.R.); (O.G.); (M.G.)
| | | | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (R.R.); (O.G.); (M.G.)
| |
Collapse
|
2
|
Mokhtari A, Casale R, Salahuddin Z, Paquier Z, Guiot T, Woodruff HC, Lambin P, Van Laethem JL, Hendlisz A, Bali MA. Development of Clinical Radiomics-Based Models to Predict Survival Outcome in Pancreatic Ductal Adenocarcinoma: A Multicenter Retrospective Study. Diagnostics (Basel) 2024; 14:712. [PMID: 38611625 PMCID: PMC11011556 DOI: 10.3390/diagnostics14070712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE This multicenter retrospective study aims to identify reliable clinical and radiomic features to build machine learning models that predict progression-free survival (PFS) and overall survival (OS) in pancreatic ductal adenocarcinoma (PDAC) patients. METHODS Between 2010 and 2020 pre-treatment contrast-enhanced CT scans of 287 pathology-confirmed PDAC patients from two sites of the Hopital Universitaire de Bruxelles (HUB) and from 47 hospitals within the HUB network were retrospectively analysed. Demographic, clinical, and survival data were also collected. Gross tumour volume (GTV) and non-tumoral pancreas (RPV) were semi-manually segmented and radiomics features were extracted. Patients from two HUB sites comprised the training dataset, while those from the remaining 47 hospitals of the HUB network constituted the testing dataset. A three-step method was used for feature selection. Based on the GradientBoostingSurvivalAnalysis classifier, different machine learning models were trained and tested to predict OS and PFS. Model performances were assessed using the C-index and Kaplan-Meier curves. SHAP analysis was applied to allow for post hoc interpretability. RESULTS A total of 107 radiomics features were extracted from each of the GTV and RPV. Fourteen subgroups of features were selected: clinical, GTV, RPV, clinical & GTV, clinical & GTV & RPV, GTV-volume and RPV-volume both for OS and PFS. Subsequently, 14 Gradient Boosting Survival Analysis models were trained and tested. In the testing dataset, the clinical & GTV model demonstrated the highest performance for OS (C-index: 0.72) among all other models, while for PFS, the clinical model exhibited a superior performance (C-index: 0.70). CONCLUSIONS An integrated approach, combining clinical and radiomics features, excels in predicting OS, whereas clinical features demonstrate strong performance in PFS prediction.
Collapse
Affiliation(s)
- Ayoub Mokhtari
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Roberto Casale
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Zohaib Salahuddin
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
| | - Zelda Paquier
- Medical Physics Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Guiot
- Medical Physics Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Henry C. Woodruff
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229HX Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229HX Maastricht, The Netherlands
| | - Jean-Luc Van Laethem
- Department of Gastroenterology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Alain Hendlisz
- Department of Gastroenterology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Antonietta Bali
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
3
|
Flammia F, Fusco R, Triggiani S, Pellegrino G, Reginelli A, Simonetti I, Trovato P, Setola SV, Petralia G, Petrillo A, Izzo F, Granata V. Risk Assessment and Radiomics Analysis in Magnetic Resonance Imaging of Pancreatic Intraductal Papillary Mucinous Neoplasms (IPMN). Cancer Control 2024; 31:10732748241263644. [PMID: 39293798 PMCID: PMC11412216 DOI: 10.1177/10732748241263644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are a very common incidental finding during patient radiological assessment. These lesions may progress from low-grade dysplasia (LGD) to high-grade dysplasia (HGD) and even pancreatic cancer. The IPMN progression risk grows with time, so discontinuation of surveillance is not recommended. It is very important to identify imaging features that suggest LGD of IPMNs, and thus, distinguish lesions that only require careful surveillance from those that need surgical resection. It is important to know the management guidelines and especially the indications for surgery, to be able to point out in the report the findings that suggest malignant degeneration. The imaging tools employed for diagnosis and risk assessment are Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) with contrast medium. According to the latest European guidelines, MRI is the method of choice for the diagnosis and follow-up of patients with IPMN since this tool has a highest sensitivity in detecting mural nodules and intra-cystic septa. It plays a key role in the diagnosis of worrisome features and high-risk stigmata, which are associated with IPMNs malignant degeneration. Nowadays, the main limit of diagnostic tools is the ability to identify the precursor of pancreatic cancer. In this context, increasing attention is being given to artificial intelligence (AI) and radiomics analysis. However, these tools remain in an exploratory phase, considering the limitations of currently published studies. Key limits include noncompliance with AI best practices, radiomics workflow standardization, and clear reporting of study methodology, including segmentation and data balancing. In the radiological report it is useful to note the type of IPMN so as the morphological features, size, rate growth, wall, septa and mural nodules, on which the indications for surveillance and surgery are based. These features should be reported so as the surveillance time should be suggested according to guidelines.
Collapse
Affiliation(s)
- Federica Flammia
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), Milan, Italy
| | | | - Sonia Triggiani
- Postgraduate School of Radiodiagnostics, University of Milan, Milan, Italy
| | | | - Alfonso Reginelli
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Piero Trovato
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Petralia
- Radiology Division, IEO European Institute of Oncology IRCCS, Milan, Italy
- Departement of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Francesco Izzo
- Divisions of Hepatobiliary Surgery, "Istituto Nazionale dei Tumori IRCCS Fondazione G. Pascale", Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|