1
|
Exosomes and prostate cancer management. Semin Cancer Biol 2021; 86:101-111. [PMID: 34384877 DOI: 10.1016/j.semcancer.2021.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
Exosomes (and other extracellular vesicles) are now part of the cancer research landscape, involved both as players in pathophysiological mechanisms, as biomarkers of the cancer process and as therapeutic tools. One step they have yet to take is to move into routine clinical practice and management of prostate cancer is an example of this necessary maturation. More than for many other cancers and because a possible alternative is active surveillance (neither removal nor destruction), the diagnosis of prostate cancer does not only involve the detection of cancerous cells but also the determination of its true aggressiveness. By measuring TRMPRSS2:ERG fusion and PCA3 transcripts in urine exosomes, the EPI assay seems able to help prostate biopsy decision. Results from clinical studies showed that it can reduce the proportion of unnecessary biopsies while missing only a minimal proportion of clinically significant cancers. In metastatic prostate cancer, after failure of a first step androgen deprivation therapy, when a choice has to be made between a second-generation androgen receptor (AR) signaling inhibitor and taxane-based chemotherapy, detection of the AR splicing variant AR-V7 in circulating tumor cells (CTCs) has appeared promising. Whether exosomes could be a better material (simpler to isolate from the bloodstream than CTCs?) to detect AR-V7 has been suggested by some studies and remains to be confirmed. At last, a couple of exploratory studies either targeted or used exosomes to treat prostate cancer, by respectively inhibiting their secretion (to prevent exosome-mediated transfer of biologically active oncogenic actors), or loading them with immunogenic cancer-specific proteins (to generate anticancer vaccine) or with pharmacologic agents. Overall efforts are however still needed to confirm these results and generalize exosome-based diagnostic, prognostic or therapeutic strategies in prostate cancer management.
Collapse
|
2
|
Gao Y, Ha YS, Kwon TG, Cho YC, Lee S, Lee JN. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis. Cancer Genomics Proteomics 2021; 17:543-553. [PMID: 32859632 DOI: 10.21873/cgp.20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the second-most commonly occurring cancer among men, worldwide. Although the mechanisms associated with the progression of castration-resistant prostate cancer (CRPC) have been widely studied, the mechanism associated with more distant metastases from the bone remains unknown. This study aimed to characterize potential pathogenic kinases associated with highly metastatic PCa, that may regulate phosphorylation in extensively involved and diverse signaling pathways that are associated with the development of various cancers. MATERIALS AND METHODS A mass spectrometry (MS)-based comparative phosphoproteome strategy was utilized to identify differentially expressed kinases between the highly aggressive PCa cell-lines PC-3 and PC-3M. RESULTS Among 2,968 phosphorylation sites in PCa cells, 151 differently expressed phosphoproteins were identified. Seven motifs: -SP-, -SxxE-, -PxS-, -PxSP-, -SxxK-, -SPxK-, and -SxxxxxP- were found to be highly expressed in PC-3M cells. Based on these motifs, the kinases p21-activated kinase (PAK)2, Ste20-like kinase (SLK), mammalian Ste20-like kinase (MST)4, mitogen-activated kinase kinase (MAP2K)2, and A-Raf proto-oncogene serine/threonine kinase (ARAF) were up-regulated in PC-3M cells. CONCLUSION PAK2, SLK, MST4, MAP2K2, and ARAF are kinases that are potentially associated with the progression of increased migration in PC-3M cells and may represent molecule regulators or drug targets for highly metastatic PCa therapy.
Collapse
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
McNevin CS, Baird AM, McDermott R, Finn SP. Diagnostic Strategies for Treatment Selection in Advanced Prostate Cancer. Diagnostics (Basel) 2021; 11:345. [PMID: 33669657 PMCID: PMC7922176 DOI: 10.3390/diagnostics11020345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate Cancer (PCa) is a leading cause of morbidity and mortality among men worldwide. For most men with PCa, their disease will follow an indolent course. However, advanced PCa is associated with poor outcomes. There has been an advent of new therapeutic options with proven efficacy for advanced PCa in the last decade which has improved survival outcomes for men with this disease. Despite this, advanced PCa continues to be associated with a high rate of death. There is a lack of strong evidence guiding the timing and sequence of these novel treatment strategies. This paper focuses on a review of the strategies for diagnostic and the current evidence available for treatment selection in advanced PCa.
Collapse
Affiliation(s)
- Ciara S. McNevin
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D02 A440 Dublin, Ireland;
| | - Ray McDermott
- Department of Medical Oncology, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
- Department of Medical Oncology, St. Vincent’s University Hospital, D04 YN26 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
- Department of Histopathology, St. James’s Hospital, P.O. Box 580, James’s Street, D08 X4RX Dublin, Ireland
| |
Collapse
|
4
|
Vlaeminck-Guillem V. Clinical utility of the nuclear-localized AR-V7 biomarker for treatment choice in metastatic castration-resistant prostate cancer. Transl Androl Urol 2020; 9:2483-2487. [PMID: 33457221 PMCID: PMC7807368 DOI: 10.21037/tau-20-968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France.,Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
5
|
Lozar T, Jesenko T, Kloboves Prevodnik V, Cemazar M, Hosta V, Jericevic A, Nolde N, Grasic Kuhar C. Preclinical and Clinical Evaluation of Magnetic-Activated Cell Separation Technology for CTC Isolation in Breast Cancer. Front Oncol 2020; 10:554554. [PMID: 33042837 PMCID: PMC7522616 DOI: 10.3389/fonc.2020.554554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating tumor cell (CTC) count is an independent prognostic factor in early breast cancer. CTCs can be found in the blood of 20% of patients prior to neoadjuvant therapy. We aimed to assess the suitability of magnetic-activated cell separation (MACS) technology for isolation and cytological characterization of CTCs. In the preclinical part of the study, cell lines were spiked into buffy coat samples derived from healthy donors, and isolated using MACS. Breast cancer cells with preserved cell morphology were successfully isolated. In the clinical part, blood for CTC isolation was drawn from 44 patients with early and locally advanced breast cancer prior to neoadjuvant chemotherapy. Standard Giemsa, Papanicolaou and pancytokeratin staining was applied. 2.3% of samples contained cells that meet both the morphological and immunocytochemical criteria for CTC. In 32.6% of samples, partially degenerated pancytokeratin negative cells with morphological features of tumor cells were observed. In 65.1% of samples, CTCs were not found. In conclusion, our results demonstrate that morphologically intact tumor cells can be isolated using MACS technology. However, morphologically intact tumor cells were not detected in the clinical part of the study. At present, MACS technology does not appear suitable for use in a clinical cytopathology laboratory.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronika Kloboves Prevodnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Violeta Hosta
- Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anja Jericevic
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Natasa Nolde
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Cvetka Grasic Kuhar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Tharp D, Nandana S. How Prostate Cancer Cells Use Strategy Instead of Brute Force to Achieve Metastasis. Cancers (Basel) 2019; 11:cancers11121928. [PMID: 31817000 PMCID: PMC6966655 DOI: 10.3390/cancers11121928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Akin to many other cancers, metastasis is the predominant cause of lethality in prostate cancer (PCa). Research in the past decade or so has revealed that although metastatic manifestation is a multi-step and complex process that is orchestrated by distinct cellular and molecular mechanisms, the process in itself is an extremely inefficient one. It is now becoming increasingly evident that PCa cells employ a plethora of strategies to make the most of this inefficient process. These strategies include priming the metastatic sites ahead of colonization, devising ways to metastasize to specific organs, outsmarting the host defense surveillance, lying in a dormant state at the metastatic site for prolonged periods, and widespread reprogramming of the gene expression to suit their needs. Based on established, recent, and evolving lines of research, this review is an attempt to understand PCa metastasis from the perspective of military combat, wherein strategic maneuvering instead of brute force often plays a decisive role in the outcome.
Collapse
|
7
|
Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol 2019; 53:131-147. [PMID: 31104002 PMCID: PMC6572494 DOI: 10.2478/raon-2019-0024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tumor cells can shed from the tumor, enter the circulation and travel to distant organs, where they can seed metastases. These cells are called circulating tumor cells (CTCs). The ability of CTCs to populate distant tissues and organs has led us to believe they are the primary cause of cancer metastasis. The biological properties and interaction of CTCs with other cell types during intravasation, circulation in the bloodstream, extravasation and colonization are multifaceted and include changes of CTC phenotypes that are regulated by many signaling molecules, including cytokines and chemokines. Considering a sample is readily accessible by a simple blood draw, monitoring CTC levels in the blood has exceptional implications in oncology field. A method called the liquid biopsy allows the extraction of not only CTC, but also CTC products, such as cell free DNA (cfDNA), cell free RNA (cfRNA), microRNA (miRNA) and exosomes. Conclusions The clinical utility of CTCs and their products is increasing with advances in liquid biopsy technology. Clinical applications of liquid biopsy to detect CTCs and their products are numerous and could be used for screening of the presence of the cancer in the general population, as well as for prognostic and predictive biomarkers in cancer patients. With the development of better CTC isolation technologies and clinical testing in large prospective trials, increasing clinical utility of CTCs can be expected. The understanding of their biology and interactions with other cell types, particularly with those of the immune system and the rise of immunotherapy also hold great promise for novel therapeutic possibilities.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klara Gersak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- General Hospital Izola, Izola, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Vlaeminck-Guillem V. Extracellular Vesicles in Prostate Cancer Carcinogenesis, Diagnosis, and Management. Front Oncol 2018; 8:222. [PMID: 29951375 PMCID: PMC6008571 DOI: 10.3389/fonc.2018.00222] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, are now well recognized as major ways by which cancer cells interact with each other and stromal cells. The meaningful messages transmitted by the EVs are carried by all components of the EVs, i.e., the membrane lipids and the cargo (DNAs, RNAs, microRNAs, long non-coding RNAs, proteins). They are clearly part of the armed arsenal by which cancer cells obtain and share more and more advantages to grow and conquer new spaces. Identification of these messages offers a significant opportunity to better understand how a cancer occurs and then develops both locally and distantly. But it also provides a powerful means by which cancer progression can be detected and monitored. In the last few years, significant research efforts have been made to precisely identify how the EV trafficking is modified in cancer cells as compared to normal cells and how this trafficking is altered during cancer progression. Prostate cancer has not escaped this trend. The aim of this review is to describe the results obtained when assessing the meaningful content of prostate cancer- and stromal-derived EVs in terms of a better comprehension of the cellular and molecular mechanisms underlying prostate cancer occurrence and development. This review also deals with the use of EVs as powerful tools to diagnose non-indolent prostate cancer as early as possible and to accurately define, in a personalized approach, its present and potential aggressiveness, its response to treatment (androgen deprivation, chemotherapy, radiation, surgery), and the overall patients’ prognosis.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, Centre Hospitalier Lyon-Sud, Hospices Civils of Lyon, Pierre-Bénite, France.,Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Claude Bernard University Lyon 1, Léon Bérard Centre, Lyon, France
| |
Collapse
|
9
|
Valdez-Flores RA, Campos-Salcedo JG, Torres-Gomez JJ, Sedano-Lozano A, Parés-Hipólito J, Shelton LM, Canizalez-Román A, Valdez-Flores MA. Prospective comparison among three intrarectal anesthetic treatments combined with periprostatic nerve block during transrectal ultrasonography-guided prostate biopsy. World J Urol 2017; 36:193-199. [DOI: 10.1007/s00345-017-2136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022] Open
|
10
|
Circulating tumor cells: clinical validity and utility. Int J Clin Oncol 2017; 22:421-430. [PMID: 28238187 DOI: 10.1007/s10147-017-1105-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells (CTCs) are rare tumor cells and have been investigated as diagnostic, prognostic and predictive biomarkers in many types of cancer. Although CTCs are not currently used in clinical practice, CTC studies have accumulated a high level of clinical validity, especially in breast, lung, prostate and colorectal cancers. In this review, we present an overview of the current clinical validity of CTCs in metastatic and non-metastatic disease, and the main concepts and studies investigating the clinical utility of CTCs. In particular, this review will focus on breast, lung, colorectal and prostate cancer. Three major topics concerning the clinical utility of CTC are discussed-(1) treatment based on CTCs used as liquid biopsy, (2) treatment based on CTC count or CTC variations, and (3) treatment based on CTC biomarker expression. A summary of published or ongoing phase II and III trials is also presented.
Collapse
|
11
|
Perakis S, Auer M, Belic J, Heitzer E. Advances in Circulating Tumor DNA Analysis. Adv Clin Chem 2017; 80:73-153. [PMID: 28431643 DOI: 10.1016/bs.acc.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The analysis of cell-free circulating tumor DNA (ctDNA) is a very promising tool and might revolutionize cancer care with respect to early detection, identification of minimal residual disease, assessment of treatment response, and monitoring tumor evolution. ctDNA analysis, often referred to as "liquid biopsy" offers what tissue biopsies cannot-a continuous monitoring of tumor-specific changes during the entire course of the disease. Owing to technological improvements, efforts for the establishment of preanalytical and analytical benchmark, and the inclusion of ctDNA analyses in clinical trial, an actual clinical implementation has come within easy reach. In this chapter, recent advances of the analysis of ctDNA are summarized starting from the discovery of cell-free DNA, to methodological approaches and the clinical applicability.
Collapse
Affiliation(s)
- Samantha Perakis
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
12
|
Wadosky KM, Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 2016; 7:64447-64470. [PMID: 27487144 PMCID: PMC5325456 DOI: 10.18632/oncotarget.10901] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the most widely diagnosed male cancer in the Western World and while low- and intermediate-risk PCa patients have a variety of treatment options, metastatic patients are limited to androgen deprivation therapy (ADT). This treatment paradigm has been in place for 75 years due to the unique role of androgens in promoting growth of prostatic epithelial cells via the transcription factor androgen receptor (AR) and downstream signaling pathways. Within 2 to 3 years of ADT, disease recurs-at which time, patients are considered to have castration-recurrent PCa (CR-PCa). A universal mechanism by which PCa becomes resistant to ADT has yet to be discovered. In this review article, we discuss underlying molecular mechanisms by which PCa evades ADT. Several major resistance pathways center on androgen signaling, including intratumoral and adrenal androgen production, AR-overexpression and amplification, expression of AR mutants, and constitutively-active AR splice variants. Other ADT resistance mechanisms, including activation of glucocorticoid receptor and impairment of DNA repair pathways are also discussed. New therapies have been approved for treatment of CR-PCa, but increase median survival by only 2-8 months. We discuss possible mechanisms of resistance to these new ADT agents. Finally, the practicality of the application of "precision oncology" to this continuing challenge of therapy resistance in metastatic or CR-PCa is examined. Empirical validation and clinical-based evidence are definitely needed to prove the superiority of "precision" treatment in providing a more targeted approach and curative therapies over the existing practices that are based on biological "cause-and-effect" relationship.
Collapse
MESH Headings
- Androgen Antagonists/adverse effects
- Androgen Antagonists/therapeutic use
- Animals
- Antineoplastic Agents, Hormonal/adverse effects
- Antineoplastic Agents, Hormonal/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Humans
- Kallikreins/blood
- Male
- Mutation
- Neoplasm Staging
- Phosphorylation
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Risk Factors
- Signal Transduction/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- Kristine M. Wadosky
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shahriar Koochekpour
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|