1
|
Azra, Khan TA, Ul Haq I, Hinthong W, Campino S, Gohar A, Khan N, Kashif M, Ullah I, Clark TG. Antibiotic Susceptibility Patterns and Virulence Profiles of Classical and Hypervirulent Klebsiella pneumoniae Strains Isolated from Clinical Samples in Khyber Pakhtunkhwa, Pakistan. Pathogens 2025; 14:79. [PMID: 39861040 PMCID: PMC11768992 DOI: 10.3390/pathogens14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The emergence of hypervirulent and carbapenem-resistant hypermucoviscous Klebsiella pneumoniae strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent K. pneumoniae strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024. Among these, 64 K. pneumoniae strains were isolated and subsequently subjected to antimicrobial susceptibility testing (AST) and phenotypic virulence detection. Among the 64 isolates, 21 (32.8%) exhibited hypermucoviscosity, a characteristic associated with increased pathogenicity. Hemagglutination was observed in 35 (54.1%) of the isolates, indicating the presence of surface adhesins that facilitate bacterial adherence to host tissues. A high prevalence of biofilm formation was noted, with 54 (84%) isolates capable of forming biofilms, which are known to protect bacteria from antibiotics and the host immune response. Most isolates (59/64, 92.1%) were resistant against ampicillin, highlighting its limited efficacy against these strains. Conversely, the lowest resistance was observed for tigecycline, with only 15% (10/64) of the isolates showing resistance, indicating its potential utility as a treatment option. The study also found that 38 (59.3%) of the isolates were extended-spectrum beta-lactamase (ESBL) producers, 42 (65.6%) were multidrug-resistant (MDR), 32 (50%) were extensively drug-resistant (XDR), and 13 (20.3%) were resistant to carbapenems. The genetic study revealed biofilm producer and enhancer genes (mrkD, pgaABCD, fimH, treC, wzc, pilQ, and luxS) mainly in the hypervirulent strains. These hypervirulent strains also show a high number of resistance genes. The findings of this study underscore the critical need for the active surveillance of antimicrobial resistance and virulence determinants in K. pneumoniae. The coexistence of high levels of antibiotic resistance and virulence factors in these isolates poses a severe threat to public health, as it can lead to difficult-to-treat infections and increased morbidity and mortality.
Collapse
Affiliation(s)
- Azra
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Woranich Hinthong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
- Faculty of Epidemiology and Population Health, School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Aisha Gohar
- Microbiology Department, Bacha Khan Medical College Mardan, Mardan 23200, Pakistan;
| | - Noman Khan
- Al Rasheed Hospital & Kidney Center, Opposite Gilani Mart, Maneshra Road, Abbottabad 22020, Pakistan;
| | - Muhammad Kashif
- Public Health Reference Laboratory, Khyber Medical University Peshawar, Peshawar 25000, Pakistan
| | - Ihsan Ullah
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
| |
Collapse
|
2
|
Sah RK, Dahal P, Parajuli R, Giri GR, Tuladhar E. Prevalence of blaCTX-M and blaTEM Genes in Cefotaxime-Resistant Escherichia coli Recovered from Tertiary Care at Central Nepal: A Descriptive Cross-Sectional Study. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5517662. [PMID: 38226321 PMCID: PMC10789516 DOI: 10.1155/2024/5517662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Urinary tract infections (UTIs) are highly prevalent globally, and various antibiotics are employed for their treatment. However, the emergence of drug-resistant uropathogens towards these antibiotics causes a high rate of morbidity and mortality. This study was conducted at the Microbiology Laboratory of Grande International Hospital from November 2021 to May 2022 and aimed to assess the prevalence of UTI caused by Escherichia coli and their antibiotic susceptibility pattern with a focus on extended-spectrum beta-lactamases (ESBLs) and the prevalence of two genes (blaCTX-M and blaTEM) in cephalosporin-resistant E. coli. Altogether, 1050 urine samples were processed to obtain 165 isolates of E. coli. The isolates were identified by colony morphology and biochemical characteristics. Antimicrobial susceptibility tests (ASTs) were determined by the Kirby-Bauer disk diffusion method, and their ESBL enzymes were estimated by the combined disk method (CDM). Two ESBL genes (blaCTX-M and blaTEM) were investigated by polymerase chain reaction (PCR) in cefotaxime-resistant E. coli. Among the 1050 urine samples that were processed, 335 (31.9%) were culture-positive with 165 (49.2%) identified as E. coli. The age group ≥60 years (30.3%) had greater susceptibility to bacterial infections. AST revealed that meropenem was highly effective (95.7% susceptibility), while ampicillin showed the least sensitivity (42.4%). Among the E. coli isolates, 86 were multidrug resistant (MDR) and 10 were extensively drug resistant (XDR). Of these, 46 MDR (96%) and 2 XDR (4%) were ESBL producers. The prevalence of ESBL genes (blaCTX-M and blaTEM) was 49.3% and 54.8%, respectively. The overall accuracy of CDM as compared to PCR for the detection of the blaCTX-M gene was 55.26%. The prevalence of MDR E. coli harboring the blaCTX-M and blaTEM genes underscores the imperative role of ESBL testing in accurately identifying both beta-lactamase producers and nonproducers.
Collapse
|
3
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
4
|
Mwakyoma AA, Kidenya BR, Minja CA, Mushi MF, Sandeman A, Sabiti W, Holden MTG, Mshana SE. Allele distribution and phenotypic resistance to ciprofloxacin and gentamicin among extended-spectrum β-lactamase-producing Escherichia coli isolated from the urine, stool, animals, and environments of patients with presumptive urinary tract infection in Tanzania. FRONTIERS IN ANTIBIOTICS 2023; 2:1164016. [PMID: 39816664 PMCID: PMC11732152 DOI: 10.3389/frabi.2023.1164016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/16/2023] [Indexed: 01/18/2025]
Abstract
Background Additional antimicrobial resistance to extended-spectrum β-lactamase (ESBL)-producing E. coli exhausts treatment options. We investigated allele distribution and resistance to ciprofloxacin and gentamicin among ESBL-producing E. coli isolates from the urine, stool, animals, and environments of presumptive urinary tract infection (UTI) patients, in order to gain a crucial insight toward devising prevention and control measures and treatment guidelines. Methods Archived ESBL-producing E. coli isolates from the urine, stool, animals, and surrounding environments of presumptive UTI patients were retrieved. Antimicrobial susceptibility profiles for ciprofloxacin and gentamicin were done followed by multiplex Polymerase chain reaction (PCR) for blaCTX-M , blaTEM , and blaSHV , to determine ESBL allele distribution. Data were analyzed using STATA version 17. Results A total of 472 confirmed ESBL-producing E. coli isolates from Mwanza 243 (51.5%), Kilimanjaro 143 (30.3%), and Mbeya 86 (18.2%) were analyzed. Of these, 75 (15.9%) were from urine, 199 (42.2%) from stool, 58 (12.3%) from rectal/cloaca swabs of animals, and 140 (29.7%) from surrounding environments. Out of the 472 ESBL-producing E. coli, 98.9% (467) had at least one ESBL allele. The most frequent allele was blaCTX-M , which was detected in 88.1% (416/472) of isolates, followed by the blaTEM allele, which was detected in 51.5% (243/472) of isolates. A total of 40.7% (192/472) of isolates harbored dual blaCTX-M + blaTEM alleles and only 0.2% (1/472) of isolates had dual blaCTX-M + blaSHV alleles, whereas 2.3% (11/472) of isolates had a combination of all three alleles (blaCTX-M + blaTEM + blaSHV ). None of the isolates harbored a combination of blaTEM + blaSHV only. Resistance to ciprofloxacin and gentamicin was observed in 70.8% (334/472) and 46.0% (217/472) of isolates, respectively. There was a significant difference in the distribution of resistance to ciprofloxacin as well as gentamicin among ESBL-producing E. coli isolated from various sources (p-value < 0.001 and 0.002, respectively). Conclusion Almost all ESBL-producing E. coli isolates carry blaCTX-M , blaTEM , and blaSHV either alone or in combination, with the most common allele being blaCTX-M. The resistance to ciprofloxacin and gentamicin, which are frontline antibiotics for UTIs among ESBL-producing E. coli, is high. This implies the need to continually revise the local guidelines used for optimal empirical therapy for UTIs, and for continual research and surveillance using one health approach.
Collapse
Affiliation(s)
- Adam A. Mwakyoma
- Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Clinical Microbiology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Benson R. Kidenya
- Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Caroline A. Minja
- Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Martha F. Mushi
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Alison Sandeman
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Wilber Sabiti
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | | | - Stephen E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
5
|
Pariyar M, Adhikari S, Regmi RS, Dhungel B, Banjara MR, Rijal BP, Rijal KR, Ghimire P. Beta-Lactamase-Producing Gram-Negative Bacterial Isolates Among the Patients Attending a Tertiary Care Hospital, Kathmandu, Nepal. Microbiol Insights 2023; 16:11786361221150761. [PMID: 36713265 PMCID: PMC9880579 DOI: 10.1177/11786361221150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Over the times, carbapenems have been the choice of drug for treating multidrug-resistant (MDR) and extended spectrum beta-lactamase (ESBL)-producing organisms. The current study aimed at determining the occurrence of metallo beta-lactamase (MBL) and AmpC beta-lactamase (ABL) in gram negative bacteria isolated from clinical samples. A cross-sectional study was conducted amongst the patients visiting Manmohan Memorial Medical College and Teaching Hospital (MMTH), Kathmandu, Nepal from August 2017 to January 2018. A total of 4351 samples including urine, pus, wound swab, endotracheal tip, catheter tip, and blood were collected from the patients and processed by standard conventional microbiological methods. Antibiotic susceptibility testing (AST) of the isolates was performed by Kirby-Bauer disk diffusion method. Double disc synergy test was performed on carbapenem resistant organisms to detect production of MBL and inhibitor-based test was used for the detection of ABL production. Of the 4351 samples, 421 bacterial isolates belonging to 16 different genera were recovered, of which 303 (71.97%) were Gram negative bacilli (GNB). E. coli (189/303) and S. aureus (80/118) were the most prevalent among gram negatives and gram positives, respectively. Bacterial incidence was found significantly associated with gender, specimen type, and the department where the patients were enrolled. Colistin-sulfate and polymycin-B were the most effective drug against GNB, whereas imipenem against gram positives. Prevalence of MDR and methicillin-resistant S. aureus (MRSA) was 35.15% and 60%, respectively. The prevalence of MBL and ABL-producing isolate was 11(3.6%) and 13(4.3%), respectively. Pseudomonas aeruginosa (5/11) and E. coli (9/13) were the major MBL and ABL producers, respectively. MBL and ABL production was found to be significantly associated with the age of the patient and the specimen type. A regular antibiotic surveillance activity with screening for MBL and ABL-producing bacterial isolates in the hospital settings to curb the incidence and transmission of such difficult-to-treat pathogens.
Collapse
Affiliation(s)
- Manita Pariyar
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | - Sanjib Adhikari
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | | | - Komal Raj Rijal
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal,Komal Raj Rijal, Central Department of
Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal. Emails:
;
| | - Prakash Ghimire
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
6
|
Bhandari S, Adhikari S, Karki D, Chand AB, Sapkota S, Dhungel B, Banjara MR, Joshi P, Lekhak B, Rijal KR. Antibiotic Resistance, Biofilm Formation and Detection of mexA/mexB Efflux-Pump Genes Among Clinical Isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.810863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efflux-pump system and biofilm formation are two important mechanisms Pseudomonas aeruginosa deploys to escape the effects of antibiotics. The current study was undertaken from September 2019 to March 2020 at a tertiary-care hospital in Kathmandu in order to ascertain the burden of P. aeruginosa in clinical specimens, examine their biofilm-forming ability and determine their antibiotic susceptibility pattern along with the possession of two efflux-pump genes-mexA and mexB. Altogether 2820 clinical specimens were collected aseptically from the patients attending the hospital and processed according to standard microbiological procedures. Identification of P. aeruginosa was done by Gram stain microscopy and an array of biochemical tests. All the P. aeruginosa isolates were subjected to in vitro antibiotic susceptibility testing and their biofilm-forming ability was also examined. Presence of mexA and mexB efflux-pump genes was analyzed by Polymerase Chain Reaction (PCR) using specific primers. Out of 603 culture positive isolates, 31 (5.14%) were found to be P. aeruginosa, of which 55% were multi-drug resistant (MDR). Out of 13 commonly used antibiotics tested by Kirby-Bauer disc diffusion method, greatest resistance was shown against piperacillin-tazobactam 15 (48.4%) and ceftazidime 15 (48.4%), and least against meropenem 6 (19.4%) and ofloxacin 5 (16.2%). Of all 17 MDR isolates subjected to biofilm detection, strong biofilm formation was exhibited by 11 (65%) and 14 (82%) isolates with microtiter plate method and tube method respectively. Out of 17 isolates tested, 12 (70.6%) isolates possessed mexA and mexB genes indicating the presence of active efflux-pump system. Higher number of the isolates recovered from sputum 7 (58.3%) and pus 5 (41.7%) possessed mexA/mexB genes while the genes were not detected at all in the isolates recovered from the urine (p<0.05). This study assessed no significant association between biofilm production and multi-drug resistance (p>0.05). Adoption of stern measures by the concerned authorities to curb the incidence of multi-drug resistant and biofilm-forming isolates is recommended to prevent their dissemination in the hospital settings.
Collapse
|
7
|
Adhikari P, Maharjan R, Paudel S, Malla B, Shah PK, Bastola A, Shrestha UT. gyrA ser83 mutation among fluoroquinolone-resistant Salmonella enterica serovars from enteric fever patients in tertiary care hospital, Kathmandu. BMC Microbiol 2022; 22:51. [PMID: 35144539 PMCID: PMC8830085 DOI: 10.1186/s12866-022-02456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The management of enteric fever through antibiotics is difficult these days due to the emerging resistance of Salmonella to various antimicrobial agents. The development of antimicrobial resistance is associated with multiple factors including mutations in the specific genes. To know the current status of mutation-mediated fluoroquinolone-resistance among Salmonella enterica serovars; Typhi, Paratyphi A, B and C, this study was focused on detecting gyrA ser83 mutation by restriction digestion analysis of gyrA gene using HinfI endonuclease. RESULTS A total of 948 blood samples were processed for isolation of Salmonella spp. and 3.4% of them were found to be positive for Salmonella growth. Out of the 32 Salmonella isolates, 2.2% were S. Typhi and 1.2% were S. Paratyphi A. More interestingly, we observed less than 5% of isolates were resistant to first-line drugs including chloramphenicol, cotrimoxazole and ampicillin. More than 80% of isolates were resistant to fluoroquinolones accounting for 84.4% to levofloxacin followed by 87.5% to ofloxacin and 100% to ciprofloxacin by disc diffusion methods. However, the minimum inhibitory concentration method using agar dilution showed only 50% of isolates were resistant to ciprofloxacin. A total of 3.1% of isolates were multidrug-resistant. Similarly, 90.6% of the Salmonella isolates showed gyrA ser83 mutation with resistance to nalidixic acid. CONCLUSIONS The increased resistance to fluoroquinolones and nalidixic acid in Salmonella isolates in our study suggests the use of alternative drugs as empirical treatment. Rather, the treatment should focus on prescribing first-line antibiotics since we observed less than 5% of Salmonella isolates were resistant to these drugs.
Collapse
Affiliation(s)
- Prashanna Adhikari
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Roshani Maharjan
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Subash Paudel
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Bikram Malla
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Pradeep Kumar Shah
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Anup Bastola
- Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal
| | | |
Collapse
|
8
|
Antibacterial Resistance Pattern in Clinical and Non-clinical Bacteria by Phenotypic and Genotypic Assessment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections represent a very serious problem that threatens human health, antibiotics were designed to attack the causative agents of infectious diseases, but some bacterial pathogens became virulent and resistant to antibiotics by different mechanisms, resistance genes represented one of those mechanisms. This study attempts to screen the existence of five different resistance genes (mecA, TEM, FemA, MexD, and AmpC) among 25 bacterial isolates divided into two groups the first was non-clinical bacterial type strains including Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella typhi, and the other group includes some clinical bacterial isolates. Evaluation of their susceptibilities to different 12 antibiotic discs and attempting to find the relationship between genotype and phenotype assessment. Different responses were reported which varied from slightly susceptible to multidrug-resistant such as P. aeruginosa and K. pneumonia which could be considered as multidrug-resistant strains. Therefore, detection of resistance gene became crucial and critical to recognize the mechanism of resistance, five pairs of primers were included to investigate five responsible genes belonging to beta-lactamases, efflux pump, and methicillin resistance. Conclusively, the PCR technique is a very accurate tool to check the genetic resistance whether being expressed to phenotype or not. Moreover, the clinical bacterial isolates appeared more resistant that reflecting the impact of the surrounding environment on bacterial behavior.
Collapse
|
9
|
Gaire U, Thapa Shrestha U, Adhikari S, Adhikari N, Bastola A, Rijal KR, Ghimire P, Banjara MR. Antibiotic Susceptibility, Biofilm Production, and Detection of mecA Gene among Staphylococcus aureus Isolates from Different Clinical Specimens. Diseases 2021; 9:diseases9040080. [PMID: 34842640 PMCID: PMC8628674 DOI: 10.3390/diseases9040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing incidence of methicillin-resistant and biofilm-forming S. aureus isolates in hospital settings is a gruesome concern today. The main objectives of this study were to determine the burden of S. aureus in clinical samples, assess their antibiotic susceptibility pattern and detect biofilm formation and mecA gene in them. A total of 1968 different clinical specimens were processed to isolate S. aureus following standard microbiological procedures. Antibiotic susceptibility test of the isolates was performed by Kirby–Bauer disc-diffusion method following CLSI guidelines. Biofilm was detected through tissue culture plate method. Methicillin-resistant S. aureus (MRSA) isolates were screened using cefoxitin (30 µg) discs and mecA gene was amplified by conventional polymerase chain reaction (PCR). Of 177 bacterial growth, the prevalence of S. aureus was 15.3% (n = 27). MRSA were 55.6% (15/27) and 44% (12/27) exhibited multidrug resistance (MDR). There was no significant association between methicillin resistance and MDR (p > 0.05). Both MRSA and MSSA were least sensitive to penicillin (100%, 75%) followed by erythromycin (86.6%, 66.6%). Most of the MRSA (93.4%) were susceptible to tetracycline. All S. aureus isolates were biofilm producers—19 (70%) were weak and only one (4%) was a strong biofilm producer. The strong biofilm-producing MSSA was resistant to most of the antibiotics except cefoxitin and clindamycin. None of the MSSA possessed mecA gene while 8 (53.3%) MRSA had it. More than half of S. aureus isolated were MRSA. High incidence of multidrug resistance along with capacity to form biofilm among clinical isolates of S.aureus is a matter of apprehension and prompt adoption of biosafety measures is suggested to curb their dissemination in the hospital environments.
Collapse
Affiliation(s)
- Upama Gaire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Upendra Thapa Shrestha
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Anup Bastola
- Sukraraj Tropical and Infectious Diseases Hospital, Teku, Kathmandu 44600, Nepal;
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
- Correspondence: (K.R.R.); (M.R.B.)
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal; (U.G.); (U.T.S.); (S.A.); (N.A.); (P.G.)
- Correspondence: (K.R.R.); (M.R.B.)
| |
Collapse
|
10
|
Benameur Q, Gervasi T, Giarratana F, Vitale M, Anzà D, La Camera E, Nostro A, Cicero N, Marino A. Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics (Basel) 2021; 10:antibiotics10101157. [PMID: 34680738 PMCID: PMC8532970 DOI: 10.3390/antibiotics10101157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess the virulence, antimicrobial resistance and biofilm production of Escherichia coli strains isolated from healthy broiler chickens in Western Algeria. E. coli strains (n = 18) were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to 10 antibiotics was determined by standard methods. Virulence and extended-spectrum β-lactamase (ESBL) genes were detected by PCR. The biofilm production was evaluated by microplate assay. All the isolates were negative for the major virulence/toxin genes tested (rfbE, fliC, eaeA, stx1), except one was stx2-positive. However, all were resistant to at least three antibiotics. Ten strains were ESBL-positive. Seven carried the β-lactamase blaTEM gene only and two co-harbored blaTEM and blaCTX-M-1 genes. One carried the blaSHV gene. Among the seven strains harboring blaTEM only, six had putative enteroaggregative genes. Two contained irp2, two contained both irp2 and astA, one contained astA and another contained aggR, astA and irp2 genes. All isolates carrying ESBL genes were non-biofilm producers, except one weak producer. The ESBL-negative isolates were moderate biofilm producers and, among them, two harbored astA, two irp2, and one aggR, astA and irp2 genes. This study highlights the spread of antimicrobial-resistant E. coli strains from healthy broiler chickens in Western Algeria.
Collapse
Affiliation(s)
- Qada Benameur
- Nursing Department, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
- Correspondence: ; Tel.: +39-090-676-2870
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, 98100 Messina, Italy;
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia “Adelmo Mirri”, 90141 Palermo, Italy; (M.V.); (D.A.)
| | - Davide Anzà
- Istituto Zooprofilattico Sperimentale della Sicilia “Adelmo Mirri”, 90141 Palermo, Italy; (M.V.); (D.A.)
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| |
Collapse
|
11
|
Gurung R, Adhikari S, Adhikari N, Sapkota S, Rana JC, Dhungel B, Thapa Shrestha U, Banjara MR, Ghimire P, Rijal KR. Efficacy of Urine Dipstick Test in Diagnosing Urinary Tract Infection and Detection of the blaCTX-M Gene among ESBL-Producing Escherichia coli. Diseases 2021; 9:diseases9030059. [PMID: 34562966 PMCID: PMC8482205 DOI: 10.3390/diseases9030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
A urine dipstick test used for prompt diagnosis of urinary tract infection (UTI) is a rapid and cost-effective method. The main objective of this study was to compare the efficacy of the urine dipstick test with culture methods in screening for UTIs along with the detection of the blaCTX-M gene in extended spectrum β-lactamase (ESBL)-producing Escherichia coli. A total of 217 mid-stream urine samples were collected from UTI-suspected patients attending Bharatpur Hospital, Chitwan, and tested by dipstick test strip (COMBI-10SL, Germany) prior to the culture. E. coli isolates were identified by standard microbiological procedures and subjected to antimicrobial susceptibility testing by Kirby Bauer disc diffusion method following CLSI guideline. Primary screening of ESBL-producing E. coli isolates was conducted using ceftriaxone, cefotaxime and ceftazidime discs and phenotypically confirmed by combined disk diffusion test. Plasmid DNA of ESBL-producing strains was extracted by phenol-chloroform method and subjected to PCR for detection of the blaCTX-M gene. Out of 217 urine samples, 48 (22.12%) showed significant bacteriuria. Among 46 (21.20%) Gram negative bacteria recovered, the predominant one was E. coli 37 (77.08%) of which 33 (89.19%) were multidrug resistant (MDR). E. coli isolates showed a higher degree of resistance towards cefazolin (62.16%) while 81.08% of the isolates were sensitive towards amikacin followed by nitrofurantoin (70.27%). Among 14 (37.84%) phenotypically confirmed ESBL isolates, only eight (21.62%) isolates carried the blaCTX-M gene. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of urine dipstick test were 43.75%, 77.51%, 35.59% and 82.91%, respectively. Besides, the use of dipstick test strip for screening UTI was associated with many false positive and negative results as compared to the gold standard culture method. Hence, dipstick nitrite test alone should not be used as sole method for screening UTIs.
Collapse
Affiliation(s)
- Rubina Gurung
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Sanjeep Sapkota
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur 44200, Chitwan, Nepal;
| | - Jid Chani Rana
- Department of Microbiology, Bharatpur Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Upendra Thapa Shrestha
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
- Correspondence: or
| |
Collapse
|
12
|
Biofilm Formation and Phenotypic Detection of ESBL, MBL, KPC and AmpC Enzymes and Their Coexistence in Klebsiella spp. Isolated at the National Reference Laboratory, Kathmandu, Nepal. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Klebsiella spp. are associated with several nosocomial and opportunistic infections. Increasing antimicrobial resistance of Klebsiella species is aggravated by a number of intrinsic and extrinsic factors. The main aim of this study is to determine antimicrobial resistance due to production of β-lactamase enzymes, extended spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL) and AmpC and Klebsiella pneumoniae carbapenemase (KPC) and biofilm formation in Klebsiella isolates. A total of 2197 non-duplicate specimens of urine, sputum and pus were obtained from the National Public Health Laboratory (NPHL), Kathmandu, Nepal, between February and August 2019. Klebsiella species were isolated, identified and screened for antimicrobial susceptibility testing with the disk diffusion method. Phenotypic detection of ESBL, MBL, KPC and AmpC production was observed and biofilm production was detected by the microtiter plate method. Out of a total of 2197 clinical specimens, bacterial growth was detected in 8% (175/2197) of the specimens. Of the total isolates, 86.3% (151/175) were Gram-negative bacteria and 37.7% (57/151) were Klebsiella spp. Of the total Klebsiella spp., 56% (32/57) were multi drug resistant (MDR), 16% (9/57) were ESBL, 26% (15/57) were MBL, 4% (2/57) were KPC (class A carbapenemase), 16% (9/57) were AmpC producers and 95% (54/57) were biofilm producers. Gentamicin was the most effective antibiotic, followed by cotrimoxazole, as 68% (39/57) and 47% (27/57) of the Klebsiella isolates were susceptible towards these drugs, respectively. The study results show evidence of β-lactamase production, high prevalence of MDR and biofilm producing Klebsiella species. Integrating the test parameters for phenotypic confirmation of ESBL, MBL, AmpC β lactamase and KPC in routine diagnostic procedures can help in the early detection and management of these resistant strains.
Collapse
|
13
|
Karki D, Dhungel B, Bhandari S, Kunwar A, Joshi PR, Shrestha B, Rijal KR, Ghimire P, Banjara MR. Antibiotic resistance and detection of plasmid mediated colistin resistance mcr-1 gene among Escherichia coli and Klebsiella pneumoniae isolated from clinical samples. Gut Pathog 2021; 13:45. [PMID: 34225805 PMCID: PMC8256586 DOI: 10.1186/s13099-021-00441-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is alarmingly high. Reintroduction of colistin as last resort treatment in the infections caused by drug-resistant Gram-negative bacteria has led to the emergence and spread of colistin resistance. This study was designed to determine the prevalence of drug-resistance among beta-lactamase-producing strains of Escherichia coli and Klebsiella pneumoniae, isolated from the clinical specimens received at a tertiary care centre of Kathmandu, Nepal during the period of March to August, 2019. METHODS A total of 3216 different clinical samples were processed in the Microbiology laboratory of Kathmandu Model Hospital. Gram-negative isolates (E. coli and K. pneumoniae) were processed for antimicrobial susceptibility test (AST) by using modified Kirby-Bauer disc diffusion method. Drug-resistant isolates were further screened for extended-spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL), carbapenemase and K. pneumoniae carbapenemase (KPC) production tests. All the suspected enzyme producers were processed for phenotypic confirmatory tests. Colistin resistance was determined by minimum inhibitory concentration (MIC) using agar dilution method. Colistin resistant strains were further screened for plasmid-mediated mcr-1 gene using conventional polymerase chain reaction (PCR). RESULTS Among the total samples processed, 16.4% (529/3216) samples had bacterial growth. A total of 583 bacterial isolates were recovered from 529 clinical samples. Among the total isolates, 78.0% (455/583) isolates were Gram-negative bacteria. The most predominant isolate among Gram-negatives was E. coli (66.4%; 302/455) and K. pneumoniae isolates were 9% (41/455). In AST, colistin, polymyxin B and tigecycline were the most effective antibiotics. The overall prevalence of multidrug-resistance (MDR) among both of the isolates was 58.0% (199/343). In the ESBL testing, 41.1% (n = 141) isolates were confirmed as ESBL-producers. The prevalence of ESBL-producing E. coli was 43% (130/302) whereas that of K. pneumoniae was 26.8% (11/41). Similarly, 12.5% (43/343) of the total isolates, 10.9% (33/302) of E. coli and 24.3% of (10/41) K. pneumoniae were resistant to carbapenem. Among 43 carbapenem resistant isolates, 30.2% (13/43) and 60.5% (26/43) were KPC and MBL-producers respectively. KPC-producers isolates of E. coli and K. pneumoniae were 33.3% (11/33) and 20% (2/10) respectively. Similarly, 63.6% (21/33) of the E. coli and 50% (5/10) of the K. pneumoniae were MBL-producers. In MIC assay, 2.2% (4/179) of E. coli and 10% (2/20) of K. pneumoniae isolates were confirmed as colistin resistant (MIC ≥ 4 µg/ml). Overall, the prevalence of colistin resistance was 3.1% (6/199) and acquisition of mcr-1 was 16.6% (3/18) among the E. coli isolates. CONCLUSION High prevalence of drug-resistance in our study is indicative of a deteriorating situation of AMR. Moreover, significant prevalence of resistant enzymes in our study reinforces their roles in the emergence of drug resistance. Resistance to last resort drug (colistin) and the isolation of mcr-1 indicate further urgency in infection management. Therefore, extensive surveillance, formulation and implementation of effective policies, augmentation of diagnostic facilities and incorporation of antibiotic stewardship programs can be some remedies to cope with this global crisis.
Collapse
Affiliation(s)
- Deepa Karki
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Srijana Bhandari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anil Kunwar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Basudha Shrestha
- Department of Microbiology, Kathmandu Model Hospital, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
14
|
Maharjan A, Dhungel B, Bastola A, Thapa Shrestha U, Adhikari N, Banjara MR, Lekhak B, Ghimire P, Rijal KR. Antimicrobial Susceptibility Pattern of Salmonella spp. Isolated from Enteric Fever Patients in Nepal. Infect Dis Rep 2021; 13:388-400. [PMID: 33919283 PMCID: PMC8167555 DOI: 10.3390/idr13020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Enteric fever, a systemic infection caused by Salmonella enterica Typhi and S. enterica Paratyphi is one of the most common infections in developing countries such as Nepal. Aside from irrational practices of antibiotic use, mutations in chromosomal genes encoding DNA gyrase and Topoisomerase IV and by plasmid mediated quinolone resistant (PMQR) genes are suggested mechanisms for the development of resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. Regardless of high endemicity of enteric fever in Nepal, there is paucity of studies on prevalence and drug-resistance of the pathogen. Therefore, this study aimed to assess the antibiotic susceptibility pattern of Salmonella isolates and determine the minimum inhibitory concentration of ciprofloxacin. METHODS A total of 1298 blood samples were obtained from patients with suspected enteric fever, attending Sukraraj Tropical and Infectious Disease Hospital (STIDH) during March-August, 2019. Blood samples were inoculated immediately into BACTEC culture bottles and further processed for isolation and identification of Salmonella Typhi and S. Paratyphi. Axenic cultures of the isolates were further subjected to antimicrobial susceptibility testing (AST) by using the modified Kirby-Bauer disc diffusion method based on the guidelines by CLSI. The minimum inhibitory concentration (MIC) of ciprofloxacin was determined by agar-dilution method. RESULTS Out of 1298 blood cultures, 40 (3.1%) were positive for Salmonella spp. among which 29 (72.5%) isolates were S. Typhi and 11 (27.5%) isolates were S. Paratyphi A. In AST, 12.5% (5/40), 15% (6/40) and 20% (8/40) of the Salmonella isolates were susceptible to nalidixic acid, ofloxacin and levofloxacin, respectively, whereas none of the isolates were susceptible to ciprofloxacin. The MIC value for ciprofloxacin ranged from 0.06-16 µg/mL in which, respectively, 5% (2/40) and 52.5% (21/40) of the isolates were susceptible and resistant to ciprofloxacin. None of the isolates showed multidrug-resistance (MDR) in this study. CONCLUSION This study showed high prevalence of quinolone-resistant Salmonella spp., while there was marked re-emergence of susceptibilities to traditional first option drugs. Hence, conventional first-line-drugs and third-generation cephalosporins may find potential usage as the empirical drugs for enteric fever. Although our reporting was free of MDR strains, extensive surveillance, augmentation of diagnostic facilities and treatment protocol aided by AST report are recommended for addressing the escalating drug-resistance in the country.
Collapse
Affiliation(s)
- Anu Maharjan
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Anup Bastola
- Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu 44600, Nepal;
| | - Upendra Thapa Shrestha
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Binod Lekhak
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal; (A.M.); (B.D.); (U.T.S.); (N.A.); (M.R.B.); (B.L.); (P.G.)
| |
Collapse
|