1
|
Ryan TD, Bates JE, Kinahan KE, Leger KJ, Mulrooney DA, Narayan HK, Ness K, Okwuosa TM, Rainusso NC, Steinberger J, Armenian SH. Cardiovascular Toxicity in Patients Treated for Childhood Cancer: A Scientific Statement From the American Heart Association. Circulation 2025; 151:e926-e943. [PMID: 40104841 DOI: 10.1161/cir.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The field of cardio-oncology has expanded over the past 2 decades to address the ever-increasing issues related to cardiovascular disease in patients with cancer and survivors. There is increasing recognition that nearly all cancer treatments pose some short- or long-term risk for development of cardiovascular disease and that pediatric patients with cancer may be especially vulnerable to cardiovascular disease because of young age at treatment and expected long life span afterward. Anthracycline chemotherapy and chest-directed radiotherapy are the most well-studied cardiotoxic therapies, and dose reduction, use of cardioprotection for anthracyclines, and modern radiotherapy approaches have contributed to improved cardiovascular outcomes for survivors. Newer treatments such as small-molecule inhibitors, antibody-based cytotoxic therapy, and immunotherapy have expanded options for previously difficult-to-treat cancers but have also revealed new cardiotoxic profiles. Application of effective surveillance strategies in patients with cancer and survivors has been a focus of practitioners and researchers, whereas the prevention and treatment of extant cardiovascular disease is still developing. Incorporation of new strategies in an equitable manner and appropriate transition from pediatric to adult care will greatly influence long-term health-related outcomes in the growing population of childhood cancer survivors at risk for cardiovascular disease.
Collapse
|
2
|
Miao M, Liu X, Zhang H, Dai H. Immuno-inflammatory mechanisms in cardio-oncology: new hopes for immunotargeted therapies. Front Oncol 2025; 15:1516977. [PMID: 40182041 PMCID: PMC11966441 DOI: 10.3389/fonc.2025.1516977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Cardio-oncology is an emerging interdisciplinary field concerned with cancer treatment-related cardiovascular toxicities (CTR-CVT) and concomitant cardiovascular diseases (CVD) in patients with cancer. Inflammation and immune system dysregulation are common features of tumors and cardiovascular disease (CVD). In addition to the mutual exacerbating effect through inflammation, tumor treatments, including immunotherapy, chemotherapy, radiation therapy, and targeted therapy, may induce immune inflammatory reactions leading to cardiovascular damage. Cancer immunotherapy is currently a new method of cancer treatment. Immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cell immunotherapy (CAR-T), mRNA vaccines, etc., can induce anti-tumor effects by enhancing the host immune response to eliminate tumor cells. They have achieved remarkable therapeutic efficacy in clinical settings but lead to many immune-related adverse events (irAEs), especially CTR-CVT. Establishing specific evaluation, diagnostic, and monitoring criteria (e.g., inflammatory biomarkers) for both immunotherapy and anti-inflammatory therapy-related cardiovascular toxicity is vital to guide clinical practice. This article explores the role of immune response and inflammation in tumor cardiology, unravels the underlying mechanisms, and provides improved methods for monitoring and treating in CTR-CVT in the field of cardio-oncology.
Collapse
Affiliation(s)
- Meiqi Miao
- Department of Cardiology, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Xinxin Liu
- Postdoctoral Mobile Station, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- The Innovation Base, Mudanjiang Collaborative Innovation Center for the Development and Application of Northern Medicinal Resources, Mudanjiang, China
| | - Han Zhang
- Department of Cardiology, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hailong Dai
- Department of Cardiology, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Liu CJ, Wang LK, Tsai FM. The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury. Curr Issues Mol Biol 2025; 47:176. [PMID: 40136430 PMCID: PMC11941228 DOI: 10.3390/cimb47030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapeutic agents play a crucial role in cancer treatment. However, their use is often associated with significant adverse effects, particularly cardiotoxicity. Drugs such as anthracyclines (e.g., doxorubicin) and platinum-based agents (e.g., cisplatin) cause mitochondrial damage, which is one of the main mechanisms underlying cardiotoxicity. These drugs induce oxidative stress, leading to an increase in reactive oxygen species (ROS), which in turn damage the mitochondria in cardiomyocytes, resulting in impaired cardiac function and heart failure. Mitochondria-targeted antioxidants (MTAs) have emerged as a promising cardioprotective strategy, offering a potential solution. These agents efficiently scavenge ROS within the mitochondria, protecting cardiomyocytes from oxidative damage. Recent studies have shown that MTAs, such as elamipretide, SkQ1, CoQ10, and melatonin, significantly mitigate chemotherapy-induced cardiotoxicity. These antioxidants not only reduce oxidative damage but also help maintain mitochondrial structure and function, stabilize mitochondrial membrane potential, and prevent excessive opening of the mitochondrial permeability transition pore, thus preventing apoptosis and cardiac dysfunction. In this review, we integrate recent findings to elucidate the mechanisms of chemotherapy-induced cardiotoxicity and highlight the substantial therapeutic potential of MTAs in reducing chemotherapy-induced heart damage. These agents are expected to offer safer and more effective treatment options for cancer patients in clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Liu
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Veterinary Diagnostic Division, National Laboratory Animal Center, National Institutes of Applied Research, Taipei City 115, Taiwan;
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
4
|
Panuccio G, Correale P, d'Apolito M, Mutti L, Giannicola R, Pirtoli L, Giordano A, Labate D, Macheda S, Carabetta N, Abdelwahed YS, Landmesser U, Tassone P, Tagliaferri P, De Rosa S, Torella D. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Basic Res Cardiol 2025; 120:153-169. [PMID: 39225869 PMCID: PMC11790807 DOI: 10.1007/s00395-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
Collapse
Affiliation(s)
- Giuseppe Panuccio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany.
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Maria d'Apolito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università dell'Aquila, L'Aquila, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Youssef S Abdelwahed
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
5
|
Daryanani AE, Abbasi MA, Gomez Ardila MF, Tellez-Garcia E, Garzon-Dangond JM, Lin Y, Paludo J, Herrmann J, Ansell SM, Rosenthal AC, Villarraga HR. Baseline echocardiographic variables as predictors of hemodynamically significant cytokine release syndrome in adults treated with CD19 CAR T-cell therapy for hematological malignancies. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:91. [PMID: 39709512 DOI: 10.1186/s40959-024-00290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND CD19 CAR T-cell therapy is a novel anti-cancer treatment that has produced remarkable responses in relapsed or refractory B-cell hematological malignancies. Cytokine Release Syndrome (CRS) is a dysregulated immune response that frequently occurs after CAR T-cell infusion. It can cause cardiac dysfunction and circulatory collapse negatively impacting outcomes and survival. To endure the insults of CRS, patients are typically screened for adequate cardiac reserve before treatment. The relationship between baseline cardiac function by echocardiography and the development of moderate to severe presentations of CRS is unclear. METHODS This study aimed to identify baseline echocardiographic variables that can predict the development of hemodynamically significant CRS (CRS ≥ 2), evaluate their behavior at follow-up, and investigate the incidence of cancer therapy-related cardiac dysfunction (CTRCD). An observational retrospective cohort study of patients treated with CD19 CAR T-cell therapy with a baseline echocardiogram was performed. Demographic, clinical and echocardiographic variables were abstracted from the electronic health record. Patients were grouped and compared by the occurrence of CRS < 2 and ≥ 2. Adjusted logistic regression analysis was used to evaluate the association between echocardiographic variables and the development of CRS ≥ 2. RESULTS 291 patients were included in the study. Median age was 60 (IQR: 51, 67 years), 73% were male, and 71% had diffuse large B-cell lymphoma. Logistic regression analysis did not reveal any significant baseline echocardiographic predictors of CRS ≥ 2, including left ventricular ejection fraction and global longitudinal strain. Systolic and diastolic echocardiographic variables remained within normal limits at follow-up overall and in both CRS groups. The incidence of CTRCD was 4.5% and occurred mostly in the setting of CRS ≥ 2. CONCLUSION No specific echocardiographic variables predicted the development of CRS ≥ 2, and therefore the mechanism leading to hemodynamic decompensation and producing worsening hypoxia and hypotension could be multifactorial and not directly cardiac mediated.
Collapse
Affiliation(s)
- Andres E Daryanani
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA
| | - Muhannad A Abbasi
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA
| | - Maria F Gomez Ardila
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA
| | - Eduardo Tellez-Garcia
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA
| | - Juan M Garzon-Dangond
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA
| | - Yi Lin
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonas Paludo
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Allison C Rosenthal
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, ARZ, USA
| | - Hector R Villarraga
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1 St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Lancman G, Song K, White D, Crosbie T, Sharif I, Emond M, Saleem Raza M, Elias M, Kaedbey R, Chu MP. Recommendations for the effective use of T-cell-redirecting therapies: a Canadian consensus statement. Front Oncol 2024; 14:1446995. [PMID: 39659785 PMCID: PMC11628543 DOI: 10.3389/fonc.2024.1446995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Background T-cell-redirecting therapies, such as bispecific antibodies and chimeric antigen receptor T-cells, exploit the cytotoxic capabilities of the immune system to destroy cells expressing specific surface antigens, including malignant cells. These therapies have demonstrated unprecedented rates, depth, and duration of responses in relapsed and refractory multiple myeloma. However, there are significant challenges in implementing these therapies into practice, which require multidisciplinary and multicenter coordination and significant healthcare resources to effectively manage these patients. So far, there are no Canadian guidelines for the effective implementation and use of T-cell-redirecting therapies. Methods This consensus statement was developed based on three advisory meetings held in March, July, and November 2023. During these meetings, a panel of Canadian subject matter experts and representation from Myeloma Canada gathered to discuss the optimal procedures for the use of T-cell-redirecting therapies in the treatment of multiple myeloma. Members of the panel performed a thorough review of randomized clinical trials, real-world data, and other current literature, and provided their up-to-date clinical experience with T-cell-redirecting therapies in Canadian practice settings. Subsequently, asynchronous working groups were appointed to develop unified criteria for patient selection, appraise referral pathways, and devise strategies for management of short-term and long-term adverse events arising from the use of T-cell-redirecting therapies in multiple myeloma. Results Here, we present recommendations for optimizing patient selection, referral pathways, and adverse event management in the Canadian practice setting. These recommendations are relevant for hematologists/oncologists, oncology nurses, pharmacists, nurse practitioners, physician assistants, and other providers who treat patients with multiple myeloma, as well as individuals with multiple myeloma and their care partners. These recommendations will be of interest to clinicians who treat patients with MM at community clinics and hospitals and who may be interested in referring patients for T-cell-redirecting therapy.
Collapse
Affiliation(s)
- Guido Lancman
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Kevin Song
- The Leukemia/Bone Marrow Transplant Program of BC, BC Cancer Agency, Vancouver General Hospital, Vancouver, BC, Canada
| | - Darrell White
- Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - Tina Crosbie
- Pharmacy Department, The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Marianne Emond
- Pharmacy Department, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, QC, Canada
| | | | | | - Rayan Kaedbey
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
7
|
Gao H, Chen Z, Yao Y, He Y, Hu X. Common biological processes and mutual crosstalk mechanisms between cardiovascular disease and cancer. Front Oncol 2024; 14:1453090. [PMID: 39634266 PMCID: PMC11614734 DOI: 10.3389/fonc.2024.1453090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer and cardiovascular disease (CVD) are leading causes of mortality and thus represent major health challenges worldwide. Clinical data suggest that cancer patients have an increased likelihood of developing cardiovascular disease, while epidemiologic studies have shown that patients with cardiovascular disease are also more likely to develop cancer. These observations underscore the increasing importance of studies exploring the mechanisms underlying the interaction between the two diseases. We review their common physiological processes and potential pathophysiological links. We explore the effects of chronic inflammation, oxidative stress, and disorders of fatty acid metabolism in CVD and cancer, and also provide insights into how cancer and its treatments affect heart health, as well as present recent advances in reverse cardio-oncology using a new classification approach.
Collapse
Affiliation(s)
- Hanwei Gao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Zhongyu Chen
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yutong Yao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Li J, Chen H, Xu C, Hu M, Li J, Chang W. Systemic toxicity of CAR-T therapy and potential monitoring indicators for toxicity prevention. Front Immunol 2024; 15:1422591. [PMID: 39253080 PMCID: PMC11381299 DOI: 10.3389/fimmu.2024.1422591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Malignant tumors of the hematologic system have a high degree of malignancy and high mortality rates. Chimeric antigen receptor T cell (CAR-T) therapy has become an important option for patients with relapsed/refractory tumors, showing astonishing therapeutic effects and thus, it has brought new hope to the treatment of malignant tumors of the hematologic system. Despite the significant therapeutic effects of CAR-T, its toxic reactions, such as Cytokine Release Syndrome (CRS) and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS), cannot be ignored since they can cause damage to multiple systems, including the cardiovascular system. We summarize biomarkers related to prediction, diagnosis, therapeutic efficacy, and prognosis, further exploring potential monitoring indicators for toxicity prevention. This review aims to summarize the effects of CAR-T therapy on the cardiovascular, hematologic, and nervous systems, as well as potential biomarkers, and to explore potential monitoring indicators for preventing toxicity, thereby providing references for clinical regulation and assessment of therapeutic effects.
Collapse
Affiliation(s)
- Jingxian Li
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Huiguang Chen
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chaoping Xu
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Mengci Hu
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jiangping Li
- Department of Blood Transfusion, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Chang
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Maleki S, Esmaeili Z, Seighali N, Shafiee A, Namin SM, Zavareh MAT, Khamene SS, Mohammadkhawajah I, Nanna M, Alizadeh-Asl A, M Kwan J, Hosseini K. Cardiac adverse events after Chimeric Antigen Receptor (CAR) T cell therapies: an updated systematic review and meta-analysis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:52. [PMID: 39164789 PMCID: PMC11334556 DOI: 10.1186/s40959-024-00252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T-cell therapy is a new revolutionary method for treating refractory or relapsed hematologic malignancies, CAR T-cell therapy has been associated with cytokine release syndrome (CRS) and cardiotoxicity. We directed a systematic review and meta-analysis to determine the incidence and predictors of cardiovascular events (CVE) with CAR T-cell therapy. METHODS We investigated PubMed, Embase, Cochrane Library, and ClinicalTrials.gov for studies reporting cardiovascular outcomes in CAR-T cell recipients. The study protocol was listed in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42023478602). Twenty-three studies were included in this study. RESULTS The pooled incidence of CVE was 54% for arrhythmias, 30% for heart failure, 20% for cardiomyopathy, 10% for acute coronary syndrome, and 7% for cardiac arrest. Patients with CVE had a higher incidence of cytokine release syndrome grade ≥ 2 (RR 2.36, 95% CI 1.86-2.99). The incidence of cardiac mortality in our meta-analysis was 2% (95% CI: 1%-3%). Left ventricular ejection fraction decline was greater in the CVE group (-9.4% versus -1.5%, p < 0.001). Cardiac biomarkers like BNP, CRP, creatinine, and ferritin were also elevated. CONCLUSIONS CAR T-cell therapy commonly leads to cardiotoxicity, mediated by cytokine release syndrome. Vigilant monitoring and tailored treatments are crucial to mitigate these effects. Importantly, there's no significant difference in cardiac mortality between groups, suggesting insights for optimizing preventive interventions and reducing risks after CAR T-cell therapy.
Collapse
Affiliation(s)
- Saba Maleki
- School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Guilan Province, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran
| | - Zahra Esmaeili
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sara Montazeri Namin
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran
| | | | | | | | - Michael Nanna
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Azin Alizadeh-Asl
- Professor of Cardiology Echocardiologist, Cardio-Oncologist Founder of Cardio-Oncology in Iran Cardio-Oncology Research Center Rajaie Cardiovascular Medical & Research Institute, Tehran, Iran
| | - Jennifer M Kwan
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran.
| |
Collapse
|
10
|
Palaskas NL, Ali HJ, Koutroumpakis E, Ganatra S, Deswal A. Cardiovascular toxicity of immune therapies for cancer. BMJ 2024; 385:e075859. [PMID: 38749554 DOI: 10.1136/bmj-2023-075859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In addition to conventional chemoradiation and targeted cancer therapy, the use of immune based therapies, specifically immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T cell therapy (CAR-T), has increased exponentially across a wide spectrum of cancers. This has been paralleled by recognition of off-target immune related adverse events that can affect almost any organ system including the cardiovascular system. The use of ICIs has been associated with myocarditis, a less common but highly fatal adverse effect, pericarditis and pericardial effusions, vasculitis, thromboembolism, and potentially accelerated atherosclerosis. CAR-T resulting in a systemic cytokine release syndrome has been associated with myriad cardiovascular consequences including arrhythmias, myocardial infarction, and heart failure. This review summarizes the current state of knowledge regarding adverse cardiovascular effects associated with ICIs and CAR-T.
Collapse
Affiliation(s)
| | - Hyeon-Ju Ali
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sarju Ganatra
- Lahey Hospital and Medical Center, Burlington, MA 01805
| | - Anita Deswal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA 01805
| |
Collapse
|
11
|
Uttam Chandani K, Agrawal SP, Raval M, Siddiq S, Nadeem A, Chintakuntlawar AV, Hashmi SK. Racial Disparities in Cardiovascular and Cerebrovascular Adverse Events in Patients with Non-Hodgkin Lymphoma: A Nationwide Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:800. [PMID: 38792983 PMCID: PMC11123259 DOI: 10.3390/medicina60050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Non-Hodgkin lymphoma (NHL) has the sixth-highest malignancy-related mortality in the United States (US). However, inequalities exist in access to advanced care in specific patient populations. We aim to study the racial disparities in major adverse cardiovascular and cerebrovascular events (MACCEs) in NHL patients. Materials and Methods: Using ICD-10 codes, patients with NHL were identified from the US National Inpatient Sample 2016-2019 database. Baseline characteristics, comorbidities, and MACCE outcomes were studied, and results were stratified based on the patient's race. Results: Of the 777,740 patients with a diagnosis of NHL, 74.22% (577,215) were White, 9.15% (71,180) were Black, 9.39% (73,000) were Hispanic, 3.33% (25,935) were Asian/Pacific Islander, 0.36% (2855) were Native American, and 3.54% (27,555) belonged to other races. When compared to White patients, all-cause mortality (ACM) was significantly higher in Black patients (aOR 1.27, 95% CI 1.17-1.38, p < 0.001) and in Asian/Pacific Islander patients (aOR 1.27, 95% CI 1.12-1.45, p < 0.001). Sudden cardiac death was found to have a higher aOR in all racial sub-groups as compared to White patients; however, it was statistically significant in Black patients only (aOR 1.81, 95% CI 1.52-2.16, p < 0.001). Atrial fibrillation (AF) risk was significantly lower in patients who were Black, Hispanic, and of other races compared to White patients. Acute myocardial infarction (AMI) was noted to have a statistically significantly lower aOR in Black patients (0.70, 95% CI 0.60-0.81, p < 0.001), Hispanic patients (0.69, 95% CI 0.59-0.80, p < 0.001), and patients of other races (0.57, 95% CI 0.43-0.75, p < 0.001) as compared to White patients. Conclusions: Racial disparities are found in MACCEs among NHL patients, which is likely multifactorial, highlighting the need for healthcare strategies stratified by race to mitigate the increased risk of MACCEs. Further research involving possible epigenomic influences and social determinants of health contributing to poorer outcomes in Black and Asian/Pacific Islander patients with NHL is imperative.
Collapse
Affiliation(s)
- Kanishka Uttam Chandani
- Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI 02895, USA;
| | | | - Maharshi Raval
- Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI 02895, USA;
| | - Sajid Siddiq
- Department of Cardiology, New York Medical College/Landmark Medical Center, Woonsocket, RI 02895, USA
| | - Ahmed Nadeem
- Department of Hematology-Oncology, New York Medical College/Landmark Medical Center, Woonsocket, RI 02895, USA
| | | | - Shahrukh K. Hashmi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Computer Vision, MBZ University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Huang S, de Jong D, Das JP, Widemon RS, Braumuller B, Paily J, Deng A, Liou C, Roa T, Huang A, Ma H, D'Souza B, Leb J, L'Hereaux J, Nguyen P, Luk L, Francescone M, Yeh R, Maccarrone V, Dercle L, Salvatore MM, Capaccione KM. Imaging the Side Effects of CAR T Cell Therapy: A Primer for the Practicing Radiologist. Acad Radiol 2023; 30:2712-2727. [PMID: 37394411 DOI: 10.1016/j.acra.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a revolutionary form of immunotherapy that has proven to be efficacious in the treatment of many hematologic cancers. CARs are modified T lymphocytes that express an artificial receptor specific to a tumor-associated antigen. These engineered cells are then reintroduced to upregulate the host immune responses and eradicate malignant cells. While the use of CAR T cell therapy is rapidly expanding, little is known about how common side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) present radiographically. Here we provide a comprehensive review of how side effects present in different organ systems and how they can be optimally imaged. Early and accurate recognition of the radiographic presentation of these side effects is critical to the practicing radiologist and their patients so that these side effects can be promptly identified and treated.
Collapse
Affiliation(s)
- Sophia Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Dorine de Jong
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (D.J.)
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Reginald Scott Widemon
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jacienta Paily
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, North Carolina 28117 (A.D.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Alice Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jade L'Hereaux
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Pamela Nguyen
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mark Francescone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Valerie Maccarrone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.).
| |
Collapse
|
13
|
Constantinescu C, Moisoiu V, Tigu B, Kegyes D, Tomuleasa C. Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care-A Brief Overview and Meta-Analysis of Proportions. J Clin Med 2023; 12:6098. [PMID: 37763039 PMCID: PMC10531736 DOI: 10.3390/jcm12186098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Our primary objective was to describe the baseline characteristics, main reasons for intensive care unit (ICU) admission, and interventions required in the ICU across patients who received CAR-T cell immunotherapy. The secondary objectives were to evaluate different outcomes (ICU mortality) across patients admitted to the ICU after having received CAR-T cell therapy. MATERIALS AND METHODS We performed a medical literature review, which included MEDLINE, Embase, and Cochrane Library, of studies published from the inception of the databases until 2022. We conducted a systematic review with meta-analyses of proportions of several studies, including CAR-T cell-treated patients who required ICU admission. Outcomes in the meta-analysis were evaluated using the random-effects model. RESULTS We included four studies and analyzed several outcomes, including baseline characteristics and ICU-related findings. CAR-T cell recipients admitted to the ICU are predominantly males (62% CI-95% (57-66)). Of the total CAR-T cell recipients, 4% CI-95% (3-5) die in the hospital, and 6% CI-95% (4-9) of those admitted to the ICU subsequently die. One of the main reasons for ICU admission is acute kidney injury (AKI) in 15% CI-95% (10-19) of cases and acute respiratory failure in 10% CI-95% (6-13) of cases. Regarding the interventions initiated in the ICU, 18% CI-95% (13-22) of the CAR-T recipients required invasive mechanical ventilation during their ICU stay, 23% CI-95% (16-30) required infusion of vasoactive drugs, and 1% CI-95% (0.1-3) required renal replacement therapy (RRT). 18% CI-95% (13-22) of the initially discharged patients were readmitted to the ICU within 30 days, and the mean length of hospital stay is 22 days CI-95% (19-25). The results paint a current state of matter in CAR-T cell recipients admitted to the ICU. CONCLUSIONS To better understand immunotherapy-related complications from an ICU standpoint, acknowledge the deteriorating patient on the ward, reduce the ICU admission rate, advance ICU care, and improve the outcomes of these patients, a standard of care and research regarding CAR-T cell-based immunotherapies should be created. Studies that are looking from the perspective of intensive care are highly warranted because the available literature regarding this area is scarce.
Collapse
Affiliation(s)
- Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.C.); (C.T.)
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Intensive Care Unit, Emergency Hospital, 400006 Cluj-Napoca, Romania
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Vlad Moisoiu
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.C.); (C.T.)
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| |
Collapse
|
14
|
Kambhampati S, Herrera AF, Rhee JW. How to Treat Diffuse Large B-Cell Lymphoma: Oncologic and Cardiovascular Considerations. JACC CardioOncol 2023; 5:281-291. [PMID: 37397077 PMCID: PMC10308036 DOI: 10.1016/j.jaccao.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/04/2023] Open
Abstract
Anthracycline-containing therapy is the cornerstone of frontline treatment for diffuse large B-cell lymphoma (DLBCL), and autologous stem cell transplantation, and more recently, chimeric antigen receptor T-cell therapy are the primary treatment options for relapsed refractory DLBCL. Given these therapies are all associated with cardiovascular toxicities, patients with underlying cardiac comorbidities are severely limited in treatment options. The focus of this review is to outline the cardiotoxicities associated with these standard treatments, explore strategies developed to mitigate these toxicities, and review novel treatment strategies for patients with underlying cardiovascular comorbidities. DLBCL patients with underlying cardiac complications are a high-risk patient population who require complicated management strategies that utilize a multidisciplinary approach with collaboration between cardiologists and oncologists.
Collapse
Affiliation(s)
- Swetha Kambhampati
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Alex F. Herrera
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - June-Wha Rhee
- Department of Cardiology, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
15
|
Marar RI, Abbasi MA, Prathivadhi-Bhayankaram S, Acevedo AD, Villarraga H, Anavekar N, Bhatt VR, Paludo J. Cardiotoxicities of Novel Therapies in Hematologic Malignancies: Chimeric Antigen Receptor T-Cell Therapy and Bispecific T-Cell Engager Therapy. JCO Oncol Pract 2023:OP2200713. [PMID: 36930845 DOI: 10.1200/op.22.00713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The field of malignant hematology is transforming with novel immunotherapeutic approaches. Unfortunately, quality of life, treatment efficacy, and life expectancy are negatively affected by cardiotoxic side effects of treatment. To date, the exact mechanism and incidence of cardiotoxicity associated with these therapies is unclear. These events are believed to be triggered or occur concurrently with cytokine release syndrome. Furthermore, there are no formal guidelines to provide evaluation, treatment, and surveillance. We aim to synthesize available literature with updates on the cardiotoxic effects of novel therapies used in malignant hematologic disorders, with a focus on chimeric antigen receptor T-cell therapy and bispecific T-cell engager therapy, along with a proposed algorithm that may guide pretreatment evaluation, monitoring during treatment, and post-treatment surveillance.
Collapse
Affiliation(s)
- Rosalyn I Marar
- Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | | | | | | | | | - Nandan Anavekar
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Vijaya Raj Bhatt
- Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Jonas Paludo
- Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Li P, Liu Y, Liang Y, Bo J, Gao S, Hu Y, Hu Y, Huang H, Huang X, Jing H, Ke X, Li J, Li Y, Liu Q, Lu P, Mei H, Niu T, Song Y, Song Y, Su L, Tu S, Wang J, Wu D, Wang Z, Xu K, Ying Z, Yang Q, Zhang Y, Shi F, Zhang B, Zhang H, Zhang X, Zhao M, Zhao W, Zhao X, Huang L, Zhu J, Qian W, Han W, Liang A. 2022 Chinese expert consensus and guidelines on clinical management of toxicity in anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0585. [PMID: 36861439 PMCID: PMC9978889 DOI: 10.20892/j.issn.2095-3941.2022.0585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 03/03/2023] Open
Abstract
Adoptive cellular immunotherapy with chimeric antigen receptor (CAR) T cells has emerged as a novel modality for treating relapsed and/or refractory B-cell non-Hodgkin lymphoma (B-NHL). With increasing approval of CAR T-cell products and advances in CAR T cell therapy, CAR T cells are expected to be used in a growing number of cases. However, CAR T-cell-associated toxicities can be severe or even fatal, thus compromising the survival benefit from this therapy. Standardizing and studying the clinical management of these toxicities are imperative. In contrast to other hematological malignancies, such as acute lymphoblastic leukemia and multiple myeloma, anti-CD19 CAR T-cell-associated toxicities in B-NHL have several distinctive features, most notably local cytokine-release syndrome (CRS). However, previously published guidelines have provided few specific recommendations for the grading and management of toxicities associated with CAR T-cell treatment for B-NHL. Consequently, we developed this consensus for the prevention, recognition, and management of these toxicities, on the basis of published literature regarding the management of anti-CD19 CAR T-cell-associated toxicities and the clinical experience of multiple Chinese institutions. This consensus refines a grading system and classification of CRS in B-NHL and corresponding measures for CRS management, and delineates comprehensive principles and exploratory recommendations for managing anti-CD19 CAR T-cell-associated toxicities in addition to CRS.
Collapse
Affiliation(s)
- Ping Li
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yang Liu
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing 100853, China
| | - Yun Liang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Bo
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun 130012, China
| | - Yongxian Hu
- Center for Bone Marrow Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Hu
- Institute of Hematology, Union Hospital of Tongji Medical College; Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Huang
- Center for Bone Marrow Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaojun Huang
- Peking University People’s Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peihua Lu
- Lu Daopei Institute of Hematology, Beijing 101102, China
| | - Heng Mei
- Institute of Hematology, Union Hospital of Tongji Medical College; Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liping Su
- Department of Hematology, Shanxi Cancer Hospital, Taiyuan 030013, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Disease Center, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Zhitao Ying
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingming Yang
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing 100853, China
| | - Yajing Zhang
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing 100853, China
| | - Fengxia Shi
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Zhang
- Institute of Blood and Marrow Transplantation, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Weili Zhao
- Department of Hematology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangyu Zhao
- Peking University People’s Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Weidong Han
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing 100853, China
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
17
|
Camilli M, Maggio L, Tinti L, Lamendola P, Lanza GA, Crea F, Lombardo A. Chimeric antigen receptor-T cell therapy-related cardiotoxicity in adults and children cancer patients: A clinical appraisal. Front Cardiovasc Med 2023; 10:1090103. [PMID: 36895831 PMCID: PMC9988907 DOI: 10.3389/fcvm.2023.1090103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cells therapies represent an innovative immunological treatment for patients suffering from advanced and refractory onco-hematological malignancies. The infusion of engineered T-cells, exposing chimeric receptors on the cell surface, leads to an immune response against the tumor cells. However, data from clinical trials and observational studies showed the occurrence of a constellation of adverse events related to CAR-T cells infusion, ranging from mild effects to life-threatening organ-specific complications. In particular, CAR-T cell-related cardiovascular toxicities represent an emerging group of adverse events observed in these patients, correlated with increased morbidity and mortality. Mechanisms involved are still under investigation, although the aberrant inflammatory activation observed in cytokine release syndrome (CRS) seems to play a pivotal role. The most frequently reported cardiac events, observed both in adults and in the pediatric population, are represented by hypotension, arrhythmias and left ventricular systolic dysfunction, sometimes associated with overt heart failure. Therefore, there is an increasing need to understand the pathophysiological basis of cardiotoxicity and risk factors related to its development, in order to identify most vulnerable patients requiring a close cardiological monitoring and long-term follow-up. This review aims at highlighting CAR-T cell-related cardiovascular complications and clarifying the pathogenetic mechanisms coming at play. Moreover, we will shed light on surveillance strategies and cardiotoxicity management protocols, as well as on future research perspectives in this expanding field.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.,Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.,Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.,Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.,Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
18
|
Hernani R, Benzaquén A, Solano C. Toxicities following CAR-T therapy for hematological malignancies. Cancer Treat Rev 2022; 111:102479. [DOI: 10.1016/j.ctrv.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
19
|
Hanna KS, Kaur H, Alazzeh MS, Thandavaram A, Channar A, Purohit A, Shrestha B, Patel D, Shah H, Mohammed L. Cardiotoxicity Associated With Chimeric Antigen Receptor (CAR)-T Cell Therapy for Hematologic Malignancies: A Systematic Review. Cureus 2022; 14:e28162. [PMID: 36148204 PMCID: PMC9482759 DOI: 10.7759/cureus.28162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has been one of the most important breakthroughs for treating hematologic malignancies. On the other hand, the therapy had many toxicities. One of the toxicities of the CAR-T therapy is cardiotoxicity. The goal of the systematic review is to elaborate on the cardiotoxicities related to CAR-T therapy for hematologic malignancies. The systematic review is following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) 2020 guidelines. The systematic search was done using PubMed, PubMed Central (PMC), Google Scholar, Cochrane Library, ScienceDirect, and clinicaltrial.gov. The search and selection of studies were done on April 28, 2022, and May 6, 2022, respectively. The studies were selected based upon participants, intervention, and outcomes (PIO) elements and the articles that were included were, full-text articles published within the last ten years, clinical trials, meta-analyses, randomized controlled trial, review, and systematic review. The exclusion criteria were non-hematologic malignancy, non-English-language articles. The initial search had 2,159 publications. The publications were assessed with assessment tools of Scale of the Assessment of Narrative Review Articles (SANRA), Newcastle-Ottawa Scale (NCOS), and Cochrane Collaboration Risk of Bias Tool (CCRBT), which led to selection of eight publications. The systematic review concludes that cardiotoxicity happened in adults and pediatric patients receiving the CAR-T cell therapy and that those cardiac adverse events had many risk factors. Therefore, monitoring these cardiotoxicities is highly essential.
Collapse
Affiliation(s)
- Kerollos S Hanna
- General Physician, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harkirat Kaur
- General Physician, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammad S Alazzeh
- Orthopaedic Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abhay Thandavaram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aneeta Channar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ansh Purohit
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bijay Shrestha
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Deepkumar Patel
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hriday Shah
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
20
|
Cardiotoxicity of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Pathophysiology, Clinical Implications, and Echocardiographic Assessment. Int J Mol Sci 2022; 23:ijms23158242. [PMID: 35897819 PMCID: PMC9368621 DOI: 10.3390/ijms23158242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Contemporary anticancer immunotherapy with chimeric antigen receptor T-cell (CAR-T) therapy has dramatically changed the treatment of many hematologic malignancies previously associated with poor prognosis. The clinical improvement and the survival benefit unveiled the risk of cardiotoxicity, ranging from minimal effects to severe cardiac adverse events, including death. Immunotherapy should also be proposed even in patients with pre-existing cardiovascular risk factors, thereby increasing the potential harm of cardiotoxicity. CAR-T therapy frequently results in cytokine release syndrome (CRS), and inflammatory activation is sustained by circulating cytokines that foster a positive feedback mechanism. Prompt diagnosis and treatment of CAR-T cardiotoxicity might significantly improve outcomes and reduce the burden associated with cardiovascular complications. Clinical and echocardiographic examinations are crucial to perform a tailored evaluation and follow-up during CAR-T treatment. This review aims to summarize the pathophysiology, clinical implications, and echocardiographic assessment of CAR-T-related cardiotoxicity to enlighten new avenues for future research.
Collapse
|
21
|
Ferreros P, Trapero I. Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases 2022; 10:41. [PMID: 35892735 PMCID: PMC9326641 DOI: 10.3390/diseases10030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chimeric antigen receptor T-cell (CAR-T) therapy is an innovative therapeutic option for addressing certain recurrent or refractory hematological malignancies. However, CAR-T cells also cause the release of pro-inflammatory cytokines that lead to life-threatening cytokine release syndrome and neurotoxicity. OBJECTIVE To study the efficacy of interleukin inhibitors in addressing cytokine release syndrome (CRS) and neurotoxicity secondary to CAR-T therapy. METHODOLOGY The authors conducted a bibliographic review in which 10 articles were analyzed. These included cut-off studies, case reports, and clinical trials involving 11 cancer centers and up to 475 patients over 18 years of age. RESULTS Tocilizumab is the only interleukin inhibitor approved to address CRS secondary to CAR-T therapy due to its efficacy and safety. Other inhibitors, such as siltuximab and anakinra, could be useful in combination with tocilizumab for preventing severe cytokine release and neurotoxicity. In addition, the new specific inhibitors could be effective in mitigating CRS without affecting the cytotoxic efficacy of CAR-T therapy. CONCLUSION More lines of research should be opened to elucidate the true implications of these drugs in treating the side effects of CAR-T therapy.
Collapse
Affiliation(s)
- Puri Ferreros
- Nursing Department, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain;
| | | |
Collapse
|
22
|
Kersting D, Settelmeier S, Mavroeidi IA, Herrmann K, Seifert R, Rischpler C. Shining Damaged Hearts: Immunotherapy-Related Cardiotoxicity in the Spotlight of Nuclear Cardiology. Int J Mol Sci 2022; 23:3802. [PMID: 35409161 PMCID: PMC8998973 DOI: 10.3390/ijms23073802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
- Clinic for Internal Medicine (Tumor Research), University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| |
Collapse
|
23
|
Totzeck M, Michel L, Lin Y, Herrmann J, Rassaf T. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur Heart J 2022; 43:1928-1940. [PMID: 35257157 PMCID: PMC9123242 DOI: 10.1093/eurheartj/ehac106] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is the next revolutionary advance in cancer therapy. By using ex vivo engineered T cells to specifically target antigens, a targeted immune reaction is induced. Chimeric antigen receptor-T cell therapy is approved for patients suffering from advanced and refractory B cell and plasma cell malignancies and is undergoing testing for various other haematologic and solid malignancies. In the process of triggering an anticancer immune reaction, a systemic inflammatory response can emerge as cytokine release syndrome (CRS). The severity of CRS is highly variable across patients, ranging from mild flu-like symptoms to fulminant hyperinflammatory states with excessive immune activation, associated multiorgan failure and high mortality risk. Cytokine release syndrome is also an important factor for adverse cardiovascular (CV) events. Sinus tachycardia and hypotension are the most common reflections, similar to what is seen with other systemic inflammatory response syndromes. Corrected QT interval prolongation and tachyarrhythmias, including ventricular arrhythmias and atrial fibrillation, also show a close link with CRS. Events of myocardial ischaemia and venous thromboembolism can be provoked during CAR-T cell therapy. Although not as closely related to CRS, changes in cardiac function can be observed to the point of heart failure and cardiogenic shock. This may also be encountered in patients with severe valvular heart disease in the setting of CRS. This review will discuss the pertinent CV risks of the growing field of CAR-T cell therapy for today's cardiologists, including incidence, characteristics, and treatment options, and will conclude with an integrated management algorithm.
Collapse
Affiliation(s)
- Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Yi Lin
- Division of Hematology and Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55901, USA
| | - Joerg Herrmann
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN 55901, USA
| | - Tienush Rassaf
- Corresponding author. Tel: +49 201 723 4801, Fax: +49201 723 5401,
| |
Collapse
|
24
|
Catalá E, Iacoboni G, Vidal-Jordana Á, Oristrell G, Carpio C, Vilaseca A, Cabirta A, Bosch F, Tintoré M, Barba P. Neurotoxicity-associated sinus bradycardia after chimeric antigen receptor T-cell therapy. Hematol Oncol 2022; 40:482-487. [PMID: 35139240 DOI: 10.1002/hon.2976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The advent of chimeric antigen receptor (CAR) T-cell therapy has changed the therapeutic landscape of relapsed/refractory aggressive B-cell lymphomas. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are the typical adverse events associated with this therapy. Cardiovascular toxicities have also been reported in this setting. However, there is scarce data regarding the development of sinus bradycardia after CAR T-cell therapy. Here, we detail the clinical course of 4 patients with aggressive B-cell malignancies who received CAR T-cells and developed transient and reversible sinus bradycardia in the context of ICANS. We also discuss several hypotheses behind the pathophysiology of this potential new adverse event.
Collapse
Affiliation(s)
- Eva Catalá
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de, Barcelona, 08193, Bellaterra, Spain
| | - Ángela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (CEMCAT), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Gerard Oristrell
- Department of Cardiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Cecilia Carpio
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de, Barcelona, 08193, Bellaterra, Spain
| | - Andreu Vilaseca
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (CEMCAT), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alba Cabirta
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de, Barcelona, 08193, Bellaterra, Spain
| | - Mar Tintoré
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (CEMCAT), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de, Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
25
|
Khorasanchi A, Ansari AM, Bottinor W, Simmons G, Abbate A, Toor AA. Transient left ventricular dysfunction following chimeric antigen receptor T-cell-mediated encephalopathy: A form of stress cardiomyopathy. EJHAEM 2022; 3:231-234. [PMID: 35846197 PMCID: PMC9175695 DOI: 10.1002/jha2.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a new strategy in treating lymphoid malignancies, such as relapsed-refractory diffuse large B-cell lymphoma (DLBCL). Several toxicities including cytokine release syndrome (CRS), neurotoxicity, and cardiovascular toxicity have been linked to CAR T-cell therapy. Transient impairment in left ventricular systolic function is described after CAR-T, however, the mechanism remains poorly understood. This paper reports the clinical presentation and outcome of two patients with relapsed-refractory DLBCL who experienced encephalopathy and CRS following CAR T-cell therapy and developed transient left ventricular dysfunction consistent with stress cardiomyopathy.
Collapse
Affiliation(s)
- Adam Khorasanchi
- Department of Internal MedicineMassey Cancer Center, Virginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amir M. Ansari
- Department of Internal MedicineMassey Cancer Center, Virginia Commonwealth UniversityRichmondVirginiaUSA
| | - Wendy Bottinor
- Division of CardiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gary Simmons
- Department of Internal MedicineMassey Cancer Center, Virginia Commonwealth UniversityRichmondVirginiaUSA
| | - Antonio Abbate
- Division of CardiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amir A. Toor
- Department of Internal MedicineMassey Cancer Center, Virginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
26
|
Yoshihara K, Orihara Y, Hoshiyama T, Tamaki H, Sunayama I, Matsuda I, Nishikawa A, Kumamoto T, Samori M, Utsunomiya N, Min KD, Asakura M, Hirota S, Ishihara M, Higasa S, Yoshihara S. Severe acute heart failure during or following cytokine release syndrome after CAR T-cell therapy. Leuk Res Rep 2022; 18:100338. [PMID: 35898695 PMCID: PMC9310108 DOI: 10.1016/j.lrr.2022.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Although cardiac dysfunction after chimeric antigen receptor (CAR) T-cell therapy has been increasingly reported, the underlying dynamics and pathogenesis are not well documented. Herein, we describe the clinical presentation and treatment for two patients who developed severe acute heart failure after CAR T-cell therapy. Both cases shared several common characteristics, including the bone marrow involvement at the time of CAR T-cell therapy and early onset of cytokine release syndrome (CRS) with fever developing on the day of CAR T-cell infusion. Patients with early onset and/or severe CRS should be carefully monitored for the possibility of heart failure.
Collapse
|