1
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
2
|
Holló G, Miele Y, Rossi F, Lagzi I. Shape changes and budding of giant vesicles induced by an internal chemical trigger: an interplay between osmosis and pH change. Phys Chem Chem Phys 2021; 23:4262-4270. [PMID: 33587060 DOI: 10.1039/d0cp05952h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape transformation and budding of phospholipid/fatty acid giant hybrid vesicles can be induced by an internal chemical stimulus (pH change) when coupled with an osmotic shock. In particular, an autocatalytic enzymatic reaction set (urea-urease system), confined in the lumen of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/oleic acid (HOA) vesicles, can force the budding of the hosting vesicle, when properly fed by a trans-membrane substrate infusion. Herein, we elucidate the budding mechanism by simulating the shape changes of a vesicle during the enzymatic reaction. The area-difference-elasticity (ADE) theory is thus implemented to minimize the surface elastic energy and obtain the equilibrium shape at different values of the reduced volume and different values of the reduced preferred area difference (Δa0). Simulations, together with control experiments, unambiguously show that to obtain an effective vesicle shape transformation, the osmotic stress and the pH change in the lumen of the vesicle must act in synergy at the same timescale. Osmotic pressure induces a vesicle deflation (volume loss), while the pH change affects the preferred area difference between the outer and the inner membrane leaflets.
Collapse
Affiliation(s)
- Gábor Holló
- MTA-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics 1111, Budafoki ut 8, Budapest, Hungary
| | - Ylenia Miele
- Department of Chemistry and Biology "A. Zambelli"University of Salerno, Via Giovanni Paolo II 132, 84084 - Fisciano (SA), Italy
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences - DEEP Sciences, University of Siena, Pian dei Mantellini 44, 53100 - Siena, Italy.
| | - István Lagzi
- Department of Physics, Budapest University of Technology and Economics 1111, Budafoki út 8, Budapest, Hungary.
| |
Collapse
|
3
|
Wölfer C, Mangold M, Flassig RJ. Towards Design of Self-Organizing Biomimetic Systems. ACTA ACUST UNITED AC 2020; 3:e1800320. [PMID: 32648706 DOI: 10.1002/adbi.201800320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/28/2019] [Indexed: 11/08/2022]
Abstract
The ability of designing biosynthetic systems with well-defined functional biomodules from scratch is an ambitious and revolutionary goal to deliver innovative, engineered solutions to future challenges in biotechnology and process systems engineering. In this work, several key challenges including modularization, functional biomodule identification, and assembly are discussed. In addition, an in silico protocell modeling approach is presented as a foundation for a computational model-based toolkit for rational analysis and modular design of biomimetic systems.
Collapse
Affiliation(s)
- Christian Wölfer
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Michael Mangold
- University of Applied Sciences Bingen, Berlinstraße 109, 55411, Bingen am Rhein, Germany
| | - Robert J Flassig
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.,University of Applied Sciences Brandenburg, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| |
Collapse
|
4
|
Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. DATA 2020. [DOI: 10.3390/data5020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this theoretical work, we analyse the kinetics of charge recombination reaction after a light excitation of the Reaction Centres extracted from the photosynthetic bacterium Rhodobacter sphaeroides and reconstituted in small unilamellar phospholipid vesicles. Due to the compartmentalized nature of liposomes, vesicles may exhibit a random distribution of both ubiquinone molecules and the Reaction Centre protein complexes that can produce significant differences on the local concentrations from the average expected values. Moreover, since the amount of reacting species is very low in compartmentalized lipid systems the stochastic approach is more suitable to unveil deviations of the average time behaviour of vesicles from the deterministic time evolution.
Collapse
|
5
|
Ivanov I, Lira RB, Tang TYD, Franzmann T, Klosin A, da Silva LC, Hyman A, Landfester K, Lipowsky R, Sundmacher K, Dimova R. Directed Growth of Biomimetic Microcompartments. ACTA ACUST UNITED AC 2019; 3:e1800314. [PMID: 32648704 DOI: 10.1002/adbi.201800314] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Indexed: 01/04/2023]
Abstract
Contemporary biological cells are sophisticated and highly compartmentalized. Compartmentalization is an essential principle of prebiotic life as well as a key feature in bottom-up synthetic biology research. In this review, the dynamic growth of compartments as an essential prerequisite for enabling self-reproduction as a fundamental life process is discussed. The micrometer-sized compartments are focused on due to their cellular dimensions. Two types of compartments are considered, membraneless droplets and membrane-bound microcompartments. Growth mechanisms of aqueous droplets such as protein (condensates) or macromolecule-rich droplets (aqueous two phase systems) and coacervates are discussed, for which growth occurs via Ostwald ripening or coalescence. For membrane-bound compartments, vesicles are considered, which are composed of fatty acids, lipids, or polymers, where directed growth can occur via fusion or uptake of material from the surrounding. The development of novel approaches for growth of biomimetic microcompartments can eventually be utilized to construct new synthetic cells.
Collapse
Affiliation(s)
- Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Rafael B Lira
- Max Planck Institute of Colloids and Interfaces, Theory and Bio-Systems, Science Park Golm, 14424, Potsdam, Germany
| | - T-Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Organization of Cytoplasm & Dynamic Protocellular Systems, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Titus Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Organization of Cytoplasm & Dynamic Protocellular Systems, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Adam Klosin
- Max Planck Institute of Molecular Cell Biology and Genetics, Organization of Cytoplasm & Dynamic Protocellular Systems, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Physical Chemistry of Polymers, Ackermannweg 10, 55128, Mainz, Germany
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Organization of Cytoplasm & Dynamic Protocellular Systems, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Physical Chemistry of Polymers, Ackermannweg 10, 55128, Mainz, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Theory and Bio-Systems, Science Park Golm, 14424, Potsdam, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Theory and Bio-Systems, Science Park Golm, 14424, Potsdam, Germany
| |
Collapse
|
6
|
Altamura E, Carrara P, D'Angelo F, Mavelli F, Stano P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: a review. Synth Biol (Oxf) 2018; 3:ysy011. [PMID: 32995519 PMCID: PMC7445889 DOI: 10.1093/synbio/ysy011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulation of transcription-translation (TX-TL) machinery inside lipid vesicles and water-in-oil droplets leads to the construction of cytomimetic systems (often called 'synthetic cells') for synthetic biology and origins-of-life research. A number of recent reports have shown that protein synthesis inside these microcompartments is highly diverse in terms of rate and amount of synthesized protein. Here, we discuss the role of extrinsic stochastic effects (i.e. solute partition phenomena) as relevant factors contributing to this pattern. We evidence and discuss cases where between-compartment diversity seems to exceed the expected theoretical values. The need of accurate determination of solute content inside individual vesicles or droplets is emphasized, aiming at validating or rejecting the predictions calculated from the standard fluctuations theory. At the same time, we promote the integration of experiments and stochastic modeling to reveal the details of solute encapsulation and intra-compartment reactions.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Paolo Carrara
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Francesca D'Angelo
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, I-73100, Lecce, Italy
| |
Collapse
|
7
|
Modular assembling process of an in-silico protocell. Biosystems 2018; 165:8-21. [DOI: 10.1016/j.biosystems.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
|
8
|
Stano P, Altamura E, Mavelli F. Novel directions in molecular systems design: The case of light-transducing synthetic cells. Commun Integr Biol 2017; 10:e1365993. [PMID: 29260799 PMCID: PMC5731512 DOI: 10.1080/19420889.2017.1365993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/01/2022] Open
Abstract
Important progresses have been achieved in the past years in the field of bottom-up synthetic biology, especially aiming at constructing cell-like systems based on lipid vesicles (liposomes) entrapping both biomolecules or synthetic compounds. These "synthetic cells" mimic the behaviour of biological cells but are constituted by a minimal number of components. One key aspect related to this research is the energetic needs of synthetic cells. Up to now, high-energy compounds have been given in order to drive biochemical reactions inside the vesicle lumen. In order to be autonomous, synthetic cells must produce their own biochemical energy from available energy sources. At this aim we started a long-term research program focused on the construction of photoautotrophic synthetic cells, starting with the reconstitution, in active and highly oriented form, of the photosynthetic reaction centre in giant lipid vesicles (Altamura et al., PNAS 2017, 114, 3837-3842). Here we comment this first milestone by showing the synthetic biology context wherein it is developed, the future steps, and the experimental approach that might allow such an achievement.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, Lecce, Italy
| | | | - Fabio Mavelli
- Chemistry Department, University “Aldo Moro,” Bari, Italy
| |
Collapse
|
9
|
Altamura E, Fiorentino R, Milano F, Trotta M, Palazzo G, Stano P, Mavelli F. First moves towards photoautotrophic synthetic cells: In vitro study of photosynthetic reaction centre and cytochrome bc1 complex interactions. Biophys Chem 2017; 229:46-56. [PMID: 28688734 DOI: 10.1016/j.bpc.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Abstract
Following a bottom-up synthetic biology approach it is shown that vesicle-based cell-like systems (shortly "synthetic cells") can be designed and assembled to perform specific function (for biotechnological applications) and for studies in the origin-of-life field. We recently focused on the construction of synthetic cells capable to converting light into chemical energy. Here we first present our approach, which has been realized so far by the reconstitution of photosynthetic reaction centre in the membrane of giant lipid vesicles. Next, the details of our ongoing research program are presented. It involves the use of the reaction centre, the coenzyme Q-cytochrome c oxidoreductase, and the ATP synthase for creating an autonomous synthetic cell. We show experimental results on the chemistry of the first two proteins showing that they can efficiently sustain light-driven chemical oscillations. Moreover, the cyclic pattern has been reproduced in silico by a minimal kinetic model.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University "Aldo Moro", Via Orabona 4, I-70126 Bari, Italy
| | - Rosa Fiorentino
- Chemistry Department, University "Aldo Moro", Via Orabona 4, I-70126 Bari, Italy
| | - Francesco Milano
- CNR-IPCF, Istituto per i Processi Chimico Fisici, Via Orabona 4, I-70126 Bari, Italy
| | - Massimo Trotta
- CNR-IPCF, Istituto per i Processi Chimico Fisici, Via Orabona 4, I-70126 Bari, Italy
| | - Gerardo Palazzo
- Chemistry Department, University "Aldo Moro", Via Orabona 4, I-70126 Bari, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, I-73100 Lecce, Italy
| | - Fabio Mavelli
- Chemistry Department, University "Aldo Moro", Via Orabona 4, I-70126 Bari, Italy.
| |
Collapse
|
10
|
Mavelli F, Marangoni R, Stano P. A Simple Protein Synthesis Model for the PURE System Operation. Bull Math Biol 2015; 77:1185-212. [PMID: 25911591 DOI: 10.1007/s11538-015-0082-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/07/2015] [Indexed: 11/24/2022]
Abstract
The encapsulation of transcription-translation (TX-TL) cell-free machinery inside lipid vesicles (liposomes) is a key element in synthetic cell technology. The PURE system is a TX-TL kit composed of well-characterized parts, whose concentrations are fine tunable, which works according to a modular architecture. For these reasons, the PURE system perfectly fulfils the requirements of synthetic biology and is widely used for constructing synthetic cells. In this work, we present a simplified mathematical model to simulate the PURE system operations. Based on Michaelis-Menten kinetics and differential equations, the model describes protein synthesis dynamics by using 9 chemical species, 6 reactions and 16 kinetic parameters. The model correctly predicts the time course for messenger RNA and protein production and allows quantitative predictions. By means of this model, it is possible to foresee how the PURE system species affect the mechanism of proteins synthesis and therefore help in understanding scenarios where the concentration of the PURE system components has been modified purposely or as a result of stochastic fluctuations (for example after random encapsulation inside vesicles). The model also makes the determination of response coefficients for all species involved in the TX-TL mechanism possible and allows for scrutiny on how chemical energy is consumed by the three PURE system modules (transcription, translation and aminoacylation).
Collapse
Affiliation(s)
- Fabio Mavelli
- Chemistry Department, University of Bari, Via Orabona 4, Bari, Italy,
| | | | | |
Collapse
|
11
|
Urban PL. Compartmentalised chemistry: from studies on the origin of life to engineered biochemical systems. NEW J CHEM 2014. [DOI: 10.1039/c4nj00894d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|