1
|
Quiblier N, Rye JM, Leclerc P, Truong H, Hannou A, Heliot L, Berry H. Enhancing fluorescence correlation spectroscopy with machine learning to infer anomalous molecular motion. Biophys J 2025; 124:844-856. [PMID: 39921256 PMCID: PMC11897545 DOI: 10.1016/j.bpj.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
The random motion of molecules in living cells has consistently been reported to deviate from standard Brownian motion, a behavior coined as "anomalous diffusion." To study this phenomenon in living cells, fluorescence correlation spectroscopy (FCS) and single-particle tracking (SPT) are the two main methods of reference. In opposition to SPT, FCS, with its classical analysis methodology, cannot consider models of motion for which no analytical expression of the auto-correlation function is known. This excludes, for instance, anomalous continuous-time random walks and random walk on fractal. Moreover, the whole acquisition sequence of the classical FCS methodology takes several tens of minutes. Here, we propose a new analysis approach that frees FCS of these limitations. Our approach associates each individual FCS recording with a vector of features based on an estimator of the auto-correlation function and uses machine learning to infer the underlying model of motion and to estimate the values of the motion parameters. Using simulated recordings, we show that this approach endows FCS with the capacity to distinguish between a range of standard and anomalous random motions, including continuous-time random walk and random walk on fractal. Our approach exhibits performances comparable to the best-in-class state-of-the-art algorithms for SPT and can be used with a range of FCS setup parameters. Since it can be applied on individual recordings of short duration, we show that, with our method, FCS can be used to monitor rapid changes of the motion parameters. Finally, we apply our method on experimental FCS recordings of calibrated fluorescent beads in increasing concentrations of glycerol in water. Our results accurately predict that the beads follow Brownian motion with a diffusion coefficient and anomalous exponent, which agree with classical predictions from Stokes-Einstein law even at large glycerol concentrations. Taken together, our approach significantly augments the analysis power of FCS to capacities that are similar to state-of-the-art SPT approaches.
Collapse
Affiliation(s)
- Nathan Quiblier
- AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Jan-Michael Rye
- AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Pierre Leclerc
- University Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Henri Truong
- University Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Abdelkrim Hannou
- University Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Laurent Heliot
- University Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Hugues Berry
- AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France.
| |
Collapse
|
2
|
Liang Y, Wang W, Metzler R. Aging and confinement in subordinated fractional Brownian motion. Phys Rev E 2024; 109:064144. [PMID: 39020934 DOI: 10.1103/physreve.109.064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in harmonic confinement, when the measurement of the stochastic process starts a time t_{a}>0 after its original initiation at t=0. Specifically, we consider the aged versions of the ensemble mean-squared displacement (MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to confined CTRW. Specifically, short aging times t_{a} in confined subordinated FBM do not affect the aged MSD, while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
Collapse
|
3
|
Seckler H, Metzler R, Kelty-Stephen DG, Mangalam M. Multifractal spectral features enhance classification of anomalous diffusion. Phys Rev E 2024; 109:044133. [PMID: 38755826 DOI: 10.1103/physreve.109.044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement, pose a unique challenge in classification and characterization. In a previous study [Mangalam et al., Phys. Rev. Res. 5, 023144 (2023)2643-156410.1103/PhysRevResearch.5.023144], we established a comprehensive framework for understanding anomalous diffusion using multifractal formalism. The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk. We generate extensive datasets comprising 10^{6} trajectories from these five anomalous diffusion models and extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough analysis of neural network performance, encompassing features derived from varying numbers of spectra. We also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept groups and train neural networks using features from each designated group. Notably, several feature groups demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-window characteristics and p varation features. Multifractal spectral features, particularly those derived from three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine learning to classify anomalous diffusion processes.
Collapse
Affiliation(s)
- Henrik Seckler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, New York 12561, USA
| | - Madhur Mangalam
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|
4
|
Seckler H, Szwabiński J, Metzler R. Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories. J Phys Chem Lett 2023; 14:7910-7923. [PMID: 37646323 DOI: 10.1021/acs.jpclett.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Single-particle traces of the diffusive motion of molecules, cells, or animals are by now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine the system parameters. The tools used in this endeavor are currently being revolutionized by modern machine-learning techniques. In this Perspective we provide an overview of recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the anomalous diffusion challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.
Collapse
Affiliation(s)
- Henrik Seckler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Janusz Szwabiński
- Hugo Steinhaus Center, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Liang Y, Wang W, Metzler R, Cherstvy AG. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks. Phys Rev E 2023; 108:034113. [PMID: 37849140 DOI: 10.1103/physreve.108.034113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023]
Abstract
How do nonlinear clocks in time and/or space affect the fundamental properties of a stochastic process? Specifically, how precisely may ergodic processes such as fractional Brownian motion (FBM) acquire predictable nonergodic and aging features being subjected to such conditions? We address these questions in the current study. To describe different types of non-Brownian motion of particles-including power-law anomalous, ultraslow or logarithmic, as well as superfast or exponential diffusion-we here develop and analyze a generalized stochastic process of scaled-fractional Brownian motion (SFBM). The time- and space-SFBM processes are, respectively, constructed based on FBM running with nonlinear time and space clocks. The fundamental statistical characteristics such as non-Gaussianity of particle displacements, nonergodicity, as well as aging are quantified for time- and space-SFBM by selecting different clocks. The latter parametrize power-law anomalous, ultraslow, and superfast diffusion. The results of our computer simulations are fully consistent with the analytical predictions for several functional forms of clocks. We thoroughly examine the behaviors of the probability-density function, the mean-squared displacement, the time-averaged mean-squared displacement, as well as the aging factor. Our results are applicable for rationalizing the impact of nonlinear time and space properties superimposed onto the FBM-type dynamics. SFBM offers a general framework for a universal and more precise model-based description of anomalous, nonergodic, non-Gaussian, and aging diffusion in single-molecule-tracking observations.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Wei Wang
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Andrey G Cherstvy
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Martinez Q, Chen C, Xia J, Bahai H. Sequence-to-Sequence Change-Point Detection in Single-Particle Trajectories via Recurrent Neural Network for Measuring Self-Diffusion. Transp Porous Media 2023. [DOI: 10.1007/s11242-023-01923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractA recurrent neural network is developed for segmenting between anomalous and normal diffusion in single-particle trajectories. Accurate segmentation infers a distinct change point that is used to approximate an Einstein linear regime in the mean-squared displacement curve via the transition density function, a unique physical descriptor for short-lived and delayed transiency. Through several artificial and simulated scenarios, we demonstrate the compelling accuracy of our model for dissecting linear and nonlinear behaviour. The inherent practicality of our model lies in its ability to substantiate the self-diffusion coefficient through offline trajectory segmentation, which is opposed to the common ‘best-guess’ linear fitting standard. Additionally, we show that the transition density function has fundamental implications and correspondence to underlying mechanisms that influence transition. In particular, we show that the known proportionality between salt concentration and diffusion of water also influences delayed anomalous behaviour.
Collapse
|
7
|
Garibo-I-Orts Ò, Firbas N, Sebastiá L, Conejero JA. Gramian angular fields for leveraging pretrained computer vision models with anomalous diffusion trajectories. Phys Rev E 2023; 107:034138. [PMID: 37072993 DOI: 10.1103/physreve.107.034138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023]
Abstract
Anomalous diffusion is present at all scales, from atomic to large ones. Some exemplary systems are ultracold atoms, telomeres in the nucleus of cells, moisture transport in cement-based materials, arthropods' free movement, and birds' migration patterns. The characterization of the diffusion gives critical information about the dynamics of these systems and provides an interdisciplinary framework with which to study diffusive transport. Thus, the problem of identifying underlying diffusive regimes and inferring the anomalous diffusion exponent α with high confidence is critical to physics, chemistry, biology, and ecology. Classification and analysis of raw trajectories combining machine learning techniques with statistics extracted from them have widely been studied in the Anomalous Diffusion Challenge [Muñoz-Gil et al., Nat. Commun. 12, 6253 (2021)2041-172310.1038/s41467-021-26320-w]. Here we present a new data-driven method for working with diffusive trajectories. This method utilizes Gramian angular fields (GAF) to encode one-dimensional trajectories as images (Gramian matrices), while preserving their spatiotemporal structure for input to computer-vision models. This allows us to leverage two well-established pretrained computer-vision models, ResNet and MobileNet, to characterize the underlying diffusive regime and infer the anomalous diffusion exponent α. Short raw trajectories of lengths between 10 and 50 are commonly encountered in single-particle tracking experiments and are the most difficult ones to characterize. We show that GAF images can outperform the current state-of-the-art while increasing accessibility to machine learning methods in an applied setting.
Collapse
Affiliation(s)
- Òscar Garibo-I-Orts
- GRID-Grupo de Investigacion en Ciencia de Datos Valencian International University-VIU, Carrer Pintor Sorolla 21, 46002 València, Spain
| | - Nicolas Firbas
- DBS-Department of Biological Sciences, National University of Singapore 16 Science Drive 4, Singapore 117558, Singapore
| | - Laura Sebastiá
- VRAIN-Valencian Research Institute for Artificial Intelligence Universitat Politècnica de València, Cami de Vera s/n, 46022 València, Spain
| | - J Alberto Conejero
- Instituto Universitario de Matemática Pura y Aplicada Universitat Politècnica de València, Cami de Vera s/n, 46022 València, Spain
| |
Collapse
|
8
|
Seckler H, Metzler R. Bayesian deep learning for error estimation in the analysis of anomalous diffusion. Nat Commun 2022; 13:6717. [PMID: 36344559 PMCID: PMC9640593 DOI: 10.1038/s41467-022-34305-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.
Collapse
Affiliation(s)
- Henrik Seckler
- Institute for Physics & Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
- Asia Pacific Centre for Theoretical Physics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
9
|
Adnan M, Alarood AAS, Uddin MI, ur Rehman I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput Sci 2022; 8:e803. [PMID: 35494796 PMCID: PMC9044349 DOI: 10.7717/peerj-cs.803] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/11/2021] [Indexed: 05/09/2023]
Abstract
Corona Virus Disease 2019 (COVID-19) pandemic has increased the importance of Virtual Learning Environments (VLEs) instigating students to study from their homes. Every day a tremendous amount of data is generated when students interact with VLEs to perform different activities and access learning material. To make the generated data useful, it must be processed and managed by the proper machine learning (ML) algorithm. ML algorithms' applications are many folds with Education Data Mining (EDM) and Learning Analytics (LA) as their major fields. ML algorithms are commonly used to process raw data to discover hidden patterns and construct a model to make future predictions, such as predicting students' performance, dropouts, engagement, etc. However, in VLE, it is important to select the right and most applicable ML algorithm to give the best performance results. In this study, we aim to improve those ML and DL algorithms' performance that give an inferior performance in terms of performance, accuracy, precision, recall, and F1 score. Several ML algorithms were applied on Open University Learning Analytics (OULA) dataset to reveal which one offers the best results in terms of performance, accuracy, precision, recall, and F1 score. Two popular ML algorithms called Decision Tree (DT) and Feed-Forward Neural Network (FFNN) provided unsatisfactory results. They were selected and experimented with various techniques such as grid search cross-validation, adaptive boosting, extreme gradient boosting, early stopping, feature engineering, and dropping inactive neurons to improve their performance scores. Moreover, we also determined the feature weights/importance in predicting the students' study performance, leading to the design and development of the adaptive learning system. The ML techniques and the methods used in this research study can be used by instructors/administrators to optimize learning content and provide informed guidance to students, thus improving their learning experience and making it exciting and adaptive.
Collapse
Affiliation(s)
- Muhammad Adnan
- Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan
| | | | - M. Irfan Uddin
- Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan
| | - Izaz ur Rehman
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
10
|
Wang W, Metzler R, Cherstvy AG. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Phys Chem Chem Phys 2022; 24:18482-18504. [DOI: 10.1039/d2cp01741e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How does a systematic time-dependence of the diffusion coefficient $D (t)$ affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we examine how the behavior of the...
Collapse
|
11
|
Muñoz-Gil G, Volpe G, Garcia-March MA, Aghion E, Argun A, Hong CB, Bland T, Bo S, Conejero JA, Firbas N, Garibo I Orts Ò, Gentili A, Huang Z, Jeon JH, Kabbech H, Kim Y, Kowalek P, Krapf D, Loch-Olszewska H, Lomholt MA, Masson JB, Meyer PG, Park S, Requena B, Smal I, Song T, Szwabiński J, Thapa S, Verdier H, Volpe G, Widera A, Lewenstein M, Metzler R, Manzo C. Objective comparison of methods to decode anomalous diffusion. Nat Commun 2021; 12:6253. [PMID: 34716305 PMCID: PMC8556353 DOI: 10.1038/s41467-021-26320-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers.
Collapse
Affiliation(s)
- Gorka Muñoz-Gil
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41296, Gothenburg, Sweden.
| | - Miguel Angel Garcia-March
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Erez Aghion
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, DE-01187, Dresden, Germany
| | - Aykut Argun
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41296, Gothenburg, Sweden
| | - Chang Beom Hong
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Tom Bland
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stefano Bo
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, DE-01187, Dresden, Germany
| | - J Alberto Conejero
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Nicolás Firbas
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Òscar Garibo I Orts
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
| | - Alessia Gentili
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Zihan Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Yeongjin Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Patrycja Kowalek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Hanna Loch-Olszewska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
| | - Michael A Lomholt
- PhyLife, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Jean-Baptiste Masson
- Institut Pasteur, Université de Paris, USR 3756 (C3BI/DBC) & Neuroscience department CNRS UMR 3751, Decision and Bayesian Computation lab, F-75015, Paris, France
| | - Philipp G Meyer
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, DE-01187, Dresden, Germany
| | - Seongyu Park
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Borja Requena
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul, Korea
- Department of Data Information and Physics, Kongju National University, Kongju, 32588, Korea
| | - Janusz Szwabiński
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
| | - Samudrajit Thapa
- Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, D-14476, Potsdam-Golm, Germany
- Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hippolyte Verdier
- Institut Pasteur, Université de Paris, USR 3756 (C3BI/DBC) & Neuroscience department CNRS UMR 3751, Decision and Bayesian Computation lab, F-75015, Paris, France
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Maciej Lewenstein
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, D-14476, Potsdam-Golm, Germany
| | - Carlo Manzo
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain.
- Facultat de Ciències i Tecnologia, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), C. de la Laura,13, 08500, Vic, Spain.
| |
Collapse
|
12
|
Maraj K, Szarek D, Sikora G, Wyłomańska A. Time-averaged mean squared displacement ratio test for Gaussian processes with unknown diffusion coefficient. CHAOS (WOODBURY, N.Y.) 2021; 31:073120. [PMID: 34340341 DOI: 10.1063/5.0054119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The time-averaged mean squared displacement (TAMSD) is one of the most common statistics used for the analysis of anomalous diffusion processes. Anomalous diffusion is manifested by non-linear (mostly power-law) characteristics of the process in contrast to normal diffusion where linear characteristics are expected. One can distinguish between sub- and super-diffusive processes. We consider Gaussian anomalous diffusion models and propose a new approach used for their testing. This approach is based on the TAMSD ratio statistic for different time lags. Similar to the TAMSD, this statistic exhibits a specific behavior in the anomalous diffusion regime. Through its structure, it is independent of the diffusion coefficient, which, in general, does not influence anomalous diffusion behavior. Thus, the TAMSD ratio-based approach does not require preliminary knowledge of the diffusion coefficient's value, in contrast to the TAMSD-approach, where this value is crucial in the testing procedure. Based on the quadratic form representation of the TAMSD ratio, we calculate its main characteristics and propose a step-by-step testing procedure that can be applied for any Gaussian process. For the anomalous diffusion model used here, namely, the fractional Brownian motion, we demonstrate the effectiveness of the proposed methodology. We show that the new approach outperforms the TAMSD-based one, especially for small sample sizes. Finally, the methodology is applied to the real data from the financial market.
Collapse
Affiliation(s)
- Katarzyna Maraj
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Dawid Szarek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Grzegorz Sikora
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Agnieszka Wyłomańska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
13
|
Gajowczyk M, Szwabiński J. Detection of Anomalous Diffusion with Deep Residual Networks. ENTROPY 2021; 23:e23060649. [PMID: 34067344 PMCID: PMC8224696 DOI: 10.3390/e23060649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Identification of the diffusion type of molecules in living cells is crucial to deduct their driving forces and hence to get insight into the characteristics of the cells. In this paper, deep residual networks have been used to classify the trajectories of molecules. We started from the well known ResNet architecture, developed for image classification, and carried out a series of numerical experiments to adapt it to detection of diffusion modes. We managed to find a model that has a better accuracy than the initial network, but contains only a small fraction of its parameters. The reduced size significantly shortened the training time of the model. Moreover, the resulting network has less tendency to overfitting and generalizes better to unseen data.
Collapse
|