1
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
2
|
Lacroix T, Le Dé B, Riva A, Dunnett AJ, Chin AW. MPSDynamics.jl: Tensor network simulations for finite-temperature (non-Markovian) open quantum system dynamics. J Chem Phys 2024; 161:084116. [PMID: 39206827 DOI: 10.1063/5.0223107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The MPSDynamics.jl package provides an easy-to-use interface for performing open quantum systems simulations at zero and finite temperatures. The package has been developed with the aim of studying non-Markovian open system dynamics using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm based on environment chain mapping. The simulations rely on a tensor network representation of the quantum states as matrix product states (MPS) and tree tensor network states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle method for time evolution (including novel bond-adaptive one-site algorithms). The package also provides strong support for the measurement of single and multi-site observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. It currently handles long-range interactions, time-dependent Hamiltonians, multiple environments, bosonic and fermionic environments, and joint system-environment observables.
Collapse
Affiliation(s)
- Thibaut Lacroix
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Angela Riva
- LPENS, Département de Physique, École Normale Supérieure, Centre Automatique et Systèmes (CAS), MINES ParisTech, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris, France
| | - Angus J Dunnett
- Multiverse Computing, 7 rue de la Croix Martre, 91120 Palaiseau, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
3
|
Le Dé B, Jaouadi A, Mangaud E, Chin AW, Desouter-Lecomte M. Managing temperature in open quantum systems strongly coupled with structured environments. J Chem Phys 2024; 160:244102. [PMID: 38913841 DOI: 10.1063/5.0214051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective. T-TEDOPA [Tamascelli et al., Phys. Rev. Lett. 123, 090402 (2019)] uses a linear chain of oscillators with positive and negative frequencies, while HEOM is based on the complex poles of an optimized rational decomposition of the temperature dependent spectral density [Xu et al., Phys. Rev. Lett. 129, 230601 (2022)]. Resorting to the poles of the temperature independent spectral density and of the Bose function separately is an alternative when the problem due to the huge number of Bose poles at low temperatures is circumvented. Two examples illustrate the effectiveness of the HEOM and T-TEDOPA approaches: a benchmark pure dephasing case and a two-bath model simulating the dynamics of excited electronic states coupled through a conical intersection. We show the efficiency of T-TEDOPA to simulate dynamics at a finite temperature by using either continuous spectral densities or only all the intramolecular oscillators of a linear vibronic model calibrated from ab initio data of a phenylene ethynylene dimer.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Amine Jaouadi
- LyRIDS, ECE Paris, Graduate School of Engineering, Paris F-75015, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | - Alex W Chin
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
4
|
Xu Y, Cheng Y, Song Y, Ma H. New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments. J Chem Theory Comput 2023. [PMID: 37471519 DOI: 10.1021/acs.jctc.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (101-2) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (102-3) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order n-electron reduced density matrices (n-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxuan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Grimaudo R, Valenti D, Sergi A, Messina A. Superradiant Quantum Phase Transition for an Exactly Solvable Two-Qubit Spin-Boson Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25020187. [PMID: 36832554 PMCID: PMC9956034 DOI: 10.3390/e25020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/01/2023]
Abstract
A spin-boson-like model with two interacting qubits is analysed. The model turns out to be exactly solvable since it is characterized by the exchange symmetry between the two spins. The explicit expressions of eigenstates and eigenenergies make it possible to analytically unveil the occurrence of first-order quantum phase transitions. The latter are physically relevant since they are characterized by abrupt changes in the two-spin subsystem concurrence, in the net spin magnetization and in the mean photon number.
Collapse
Affiliation(s)
- Roberto Grimaudo
- Dipartimento di Fisica e Chimica “Emilio Segrè”, Group of Interdisciplinary Theoretical Physics, Università degli Studi di Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy
| | - Davide Valenti
- Dipartimento di Fisica e Chimica “Emilio Segrè”, Group of Interdisciplinary Theoretical Physics, Università degli Studi di Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy
| | - Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Antonino Messina
- Dipartimento di Matematica ed Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy
| |
Collapse
|
6
|
Dunnett AJ, Gowland D, Isborn CM, Chin AW, Zuehlsdorff TJ. Influence of non-adiabatic effects on linear absorption spectra in the condensed phase: Methylene blue. J Chem Phys 2021; 155:144112. [PMID: 34654312 DOI: 10.1063/5.0062950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute-solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential and direct solute-solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm (T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue in water. We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population transfer between the bright S1 and the dark S2 states. The treatment of the solvent environment is one of many factors that strongly influence the population transfer and line shape; accurate modeling can only be achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large variety of systems in complex environments from first principles.
Collapse
Affiliation(s)
- Angus J Dunnett
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Duncan Gowland
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|