Ghosh D, Mastej E, Jain R, Choi YS. Causal Inference in Radiomics: Framework, Mechanisms, and Algorithms.
Front Neurosci 2022;
16:884708. [PMID:
35812228 PMCID:
PMC9261933 DOI:
10.3389/fnins.2022.884708]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
The widespread use of machine learning algorithms in radiomics has led to a proliferation of flexible prognostic models for clinical outcomes. However, a limitation of these techniques is their black-box nature, which prevents the ability for increased mechanistic phenomenological understanding. In this article, we develop an inferential framework for estimating causal effects with radiomics data. A new challenge is that the exposure of interest is latent so that new estimation procedures are needed. We leverage a multivariate version of partial least squares for causal effect estimation. The methodology is illustrated with applications to two radiomics datasets, one in osteosarcoma and one in glioblastoma.
Collapse