1
|
Zadeh Shirazi A, Tofighi M, Gharavi A, Gomez GA. The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide. Technol Cancer Res Treat 2024; 23:15330338241250324. [PMID: 38775067 PMCID: PMC11113055 DOI: 10.1177/15330338241250324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.
Collapse
Affiliation(s)
- Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Morteza Tofighi
- Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Gharavi
- Department of Computer Science, Azad University, Mashhad Branch, Mashhad, Iran
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
2
|
Barata C, Rotemberg V, Codella NCF, Tschandl P, Rinner C, Akay BN, Apalla Z, Argenziano G, Halpern A, Lallas A, Longo C, Malvehy J, Puig S, Rosendahl C, Soyer HP, Zalaudek I, Kittler H. A reinforcement learning model for AI-based decision support in skin cancer. Nat Med 2023; 29:1941-1946. [PMID: 37501017 PMCID: PMC10427421 DOI: 10.1038/s41591-023-02475-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We investigated whether human preferences hold the potential to improve diagnostic artificial intelligence (AI)-based decision support using skin cancer diagnosis as a use case. We utilized nonuniform rewards and penalties based on expert-generated tables, balancing the benefits and harms of various diagnostic errors, which were applied using reinforcement learning. Compared with supervised learning, the reinforcement learning model improved the sensitivity for melanoma from 61.4% to 79.5% (95% confidence interval (CI): 73.5-85.6%) and for basal cell carcinoma from 79.4% to 87.1% (95% CI: 80.3-93.9%). AI overconfidence was also reduced while simultaneously maintaining accuracy. Reinforcement learning increased the rate of correct diagnoses made by dermatologists by 12.0% (95% CI: 8.8-15.1%) and improved the rate of optimal management decisions from 57.4% to 65.3% (95% CI: 61.7-68.9%). We further demonstrated that the reward-adjusted reinforcement learning model and a threshold-based model outperformed naïve supervised learning in various clinical scenarios. Our findings suggest the potential for incorporating human preferences into image-based diagnostic algorithms.
Collapse
Affiliation(s)
- Catarina Barata
- Institute for Systems and Robotics, LARSyS, Instituto Superior Técnico, Lisbon, Portugal
| | - Veronica Rotemberg
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Rinner
- Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
| | - Bengu Nisa Akay
- Ankara University School of Medicine, Department of Dermatology, Ankara, Turkey
| | - Zoe Apalla
- Second Department of Dermatology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Allan Halpern
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aimilios Lallas
- Second Department of Dermatology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Caterina Longo
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cliff Rosendahl
- General Practice Clinical Unit, Medical School, The University of Queensland, Brisbane, Queensland, Australia
| | - H Peter Soyer
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Iris Zalaudek
- Department of Dermatology, Medical University of Trieste, Trieste, Italy
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Carrillo-Rodriguez P, Selheim F, Hernandez-Valladares M. Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps. Cancers (Basel) 2023; 15:555. [PMID: 36672506 PMCID: PMC9856946 DOI: 10.3390/cancers15020555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The qualitative and quantitative evaluation of proteome changes that condition cancer development can be achieved with liquid chromatography-mass spectrometry (LC-MS). LC-MS-based proteomics strategies are carried out according to predesigned workflows that comprise several steps such as sample selection, sample processing including labeling, MS acquisition methods, statistical treatment, and bioinformatics to understand the biological meaning of the findings and set predictive classifiers. As the choice of best options might not be straightforward, we herein review and assess past and current proteomics approaches for the discovery of new cancer biomarkers. Moreover, we review major bioinformatics tools for interpreting and visualizing proteomics results and suggest the most popular machine learning techniques for the selection of predictive biomarkers. Finally, we consider the approximation of proteomics strategies for clinical diagnosis and prognosis by discussing current barriers and proposals to circumvent them.
Collapse
Affiliation(s)
- Paula Carrillo-Rodriguez
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|