1
|
A Novel Integrated Method for Harmonic Suppression and Reactive Power Compensation in Distribution Network. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Aiming at the serious harmonic pollution and the low power factor in the distribution network of industrial enterprises, this paper develops an integrated method for harmonic suppression and reactive power compensation suitable for the distribution network of industrial enterprises. The integrated method realizes the dual functions of harmonic filtering and reactive power compensation, and filters out the harmonic current to get a symmetrical current waveform while ensuring safe operation of the power compensator. In addition, it solves the problems of high harmonic content, small power factor in the distribution network, and device burnout caused by direct input of reactive power compensator. The main contributions of this paper are as follows: (1) According to the demand for the integration of harmonic suppression and reactive power compensation, the steps of integrated method for harmonic suppression and reactive power compensationare proposed, and then the methods for harmonic filtering and reactive power compensation are investigated; (2) a method for designing the capacity of a filter capacitor and the rated parameter of an electromagnetic coupling reactance converter is proposed, and an optimization simulation system is constructed to design the parameters of the filter; (3) a simulation system is developed, followed by parameter design and simulation analysis of harmonic filtering subsystem (HFSS), reactive power compensation subsystem (RPCSS) and the integrated system of harmonic suppression and reactive power compensation. Simulation results verify that the HFSS is put into operation first and then switched off later to ensure the normal operation of other equipment in the distribution network. After the treatment, the power factor, harmonic current content and total distortion rate all meet the national standards. The integrated method can dynamically track harmonics and reactive power changes, filter out harmonics, improve power factor and the symmetry level of the power source, and ensure the normal operation of other equipment in the distribution network. The research results lay a certain theoretical and technical foundation for the harmonic filtering and reactive power compensation theory, technology and its device innovation to achieve effective suppression of power harmonics and reactive power compensation.
Collapse
|
2
|
Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency. ENERGIES 2022. [DOI: 10.3390/en15051894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents the electrical system factors having an influence on the work efficiency and performance of the LC passive harmonic filters (PHFs). Such filters are very often used in industries for the purpose of harmonics mitigation and reactive power compensation. Before their installation in the electrical system, many investigations should be performed in order to ensure their good design as well as work efficiency after connection. In this paper, the factors having an influence on the PHFs work efficiency and performance, such as the grid short-circuit power, primary grid voltage spectrum (voltage measured at the PCC before the filter connection), load reactive power and current characteristic harmonics, manufacturer filter parameters tolerance and filter-detuning phenomena are investigated. Most of the quoted factors are mentioned in the literature, but the novelty of this paper is that, based on the case study example of the single-tuned filter investigated in the laboratory, the influence of those factors on the filter work efficiency are demonstrated, and some solutions and recommendations are proposed. The studies are focused on the design of the single-tuned filter in the laboratory, and some simulation results are presented as well.
Collapse
|
3
|
Multi-Objective Bee Swarm Optimization Algorithm with Minimum Manhattan Distance for Passive Power Filter Optimization Problems. MATHEMATICS 2022. [DOI: 10.3390/math10010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Harmonic distortion in power systems is a significant problem, and it is thus necessary to mitigate critical harmonics. This study proposes an optimal method for designing passive power filters (PPFs) to suppress these harmonics. The design of a PPF involves multi-objective optimization. A multi-objective bee swarm optimization (MOBSO) with Pareto optimality is implemented, and an external archive is used to store the non-dominated solutions obtained. The minimum Manhattan distance strategy was used to select the most balanced solution in the Pareto solution set. A series of case studies are presented to demonstrate the efficiency and superiority of the proposed method. Therefore, the proposed method has a very promising future not only in filter design but also in solving other multi-objective optimization problems.
Collapse
|
4
|
Multi-Objective Artificial Bee Colony Algorithm with Minimum Manhattan Distance for Passive Power Filter Optimization Problems. MATHEMATICS 2021. [DOI: 10.3390/math9243187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Passive power filters (PPFs) are most effective in mitigating harmonic pollution from power systems; however, the design of PPFs involves several objectives, which makes them a complex multiple-objective optimization problem. This study proposes a method to achieve an optimal design of PPFs. We have developed a new multi-objective optimization method based on an artificial bee colony (ABC) algorithm with a minimum Manhattan distance. Four different types of PPFs, namely, single-tuned, second-order damped, third-order damped, and C-type damped order filters, and their characteristics were considered in this study. A series of case studies have been presented to prove the efficiency and better performance of the proposed method over previous well-known algorithms.
Collapse
|
5
|
Multi-Objective Teaching–Learning-Based Optimization with Pareto Front for Optimal Design of Passive Power Filters. ENERGIES 2021. [DOI: 10.3390/en14196408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper proposes an optimal design method to suppress critical harmonics and improve the power factor by using passive power filters (PPFs). The main objectives include (1) minimizing the total harmonic distortion of voltage and current, (2) minimizing the initial investment cost, and (3) maximizing the total fundamental reactive power compensation. A methodology based on teaching–learning-based optimization (TLBO) and Pareto optimality is proposed and used to solve this multi-objective PPF design problem. The proposed method is integrated with both external archive and fuzzy decision making. The sub-group search strategy and teacher selection strategy are used to improve the diversity of non-dominated solutions (NDSs). In addition, a selection mechanism for topology combinations for PPFs is proposed. A series of case studies are also conducted to demonstrate the performance and effectiveness of the proposed method. With the proposed selection mechanisms for the topology combinations and parameters for PPFs, the best compromise solution for a complete PPF design is achieved.
Collapse
|
6
|
A Method for Designing and Optimizing the Electrical Parameters of Dynamic Tuning Passive Filter. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Power electronics-based apparatuses absorb non-sinusoidal currents. These are considered non-linear and non-symmetrical loads for the power grid, and they generate a harmonic current. The dynamic tuning passive filter (DTPF) is one of the best solutions for improving power quality and filtering out harmonic currents to get a symmetrical current waveform. The electrical parameters of DTPF can influence its absorbing harmonic current, tuning performance, and cost. In this paper, a method for designing and optimizing the electrical parameters of dynamic tuning passive filter is proposed in order to improve the effectiveness of DTPF and the symmetry level of the power source. First, according to the characteristics of the harmonic source, the design technical indicators of DTPF, and its topology, the design procedure for the electrical parameters of DTPF is proposed. Second, based on detailed analysis of the test results, the range of the harmonic current absorption coefficient is determined. Third, the range of the relationship coefficient is determined by analyzing the impact of the filter capacitor’s capacity on the filter performance. Fourth, the calculation method for the electrical parameters of DTPF is devised. Finally, the validity of this method is verified by several engineering cases, and the electrical parameters of the filter capacitor and electromagnetic coupling reactance converter (ECRC) under the lowest total cost are simulated and optimized. Our approach can optimize the electrical parameters of DTPF and improve the harmonic suppression effectiveness, thus leading to a more symmetrical waveform and successfully avoiding power grid problems. The research results of this study not only provide a basis for the design of ECRC, but also lay a foundation for the machining DTPF.
Collapse
|