1
|
Karnan H, Uma Maheswari D, Priyadharshini D, Laushya S, Thivyaprakas TK. Cognizance detection during mental arithmetic task using statistical approach. Comput Methods Biomech Biomed Engin 2025; 28:558-571. [PMID: 38164048 DOI: 10.1080/10255842.2023.2298362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.
Collapse
Affiliation(s)
- Hemalatha Karnan
- School of Chemical and Biotechnology, Department of Bioengineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - D Uma Maheswari
- School of Computing, Department of Computer Science, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - D Priyadharshini
- School of Chemical and Biotechnology, Department of Bioengineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - S Laushya
- School of Chemical and Biotechnology, Department of Bioengineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - T K Thivyaprakas
- School of Chemical and Biotechnology, Department of Bioengineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| |
Collapse
|
2
|
Huang H, Chen J, Xiao J, Chen D, Zhang J, Pan J, Li Y. Real-Time Attention Regulation and Cognitive Monitoring Using a Wearable EEG-Based BCI. IEEE Trans Biomed Eng 2025; 72:716-724. [PMID: 39320995 DOI: 10.1109/tbme.2024.3468351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Attention regulation is an essential ability in daily life that affects learning and work efficiency and is closely related to mental health. The effectiveness of brain-computer interface (BCI) systems in attention regulation has been proven, but most of these systems rely on bulky and expensive equipment and are still in the experimental stage. This study proposes a wearable BCI system for real-time attention regulation and cognitive monitoring. METHODS The BCI system integrates a wearable single-channel electroencephalogram (EEG) headband with wireless data streaming for real-time analysis. Twenty healthy subjects participated in the long-term attention regulation experiment and were evenly divided into an experimental group and a control group based on the presence of real-time neurofeedback. The neurofeedback is represented by output value of attention, which calculated from single-channel EEG data. Before and after the regulation sessions, baseline assessments were conducted for each subject, incorporating multi-channel EEG data analysis and cognitive behavioral evaluations, to verify the effectiveness of system for attention regulation. RESULTS The online experimental results indicate that the average attention level in the experimental group increased from 0.625 to 0.812, while no significant improvement was observed in the control group. Further comparative analysis revealed the reasons for the enhancement of attention regulation ability in terms of both brain network patterns and cognitive performance. SIGNIFICANCE The proposed wearable BCI system is effective at improving attention regulation ability and could be a promising tool for assisting people with attention disorders.
Collapse
|
3
|
Coman DA, Ionita S, Lita I. Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks. SENSORS (BASEL, SWITZERLAND) 2024; 24:3316. [PMID: 38894108 PMCID: PMC11174818 DOI: 10.3390/s24113316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.
Collapse
Affiliation(s)
- Daniela Andreea Coman
- Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania;
- Regional Research and Development Center for Innovative Materials, Processes, and Products for the Automotive Industry (CRC&D-Auto), 110440 Pitesti, Romania
| | - Silviu Ionita
- Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania;
| | - Ioan Lita
- Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania;
| |
Collapse
|
4
|
Rosanne O, Alves de Oliveira A, Falk TH. EEG Amplitude Modulation Analysis across Mental Tasks: Towards Improved Active BCIs. SENSORS (BASEL, SWITZERLAND) 2023; 23:9352. [PMID: 38067725 PMCID: PMC10708818 DOI: 10.3390/s23239352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Brain-computer interface (BCI) technology has emerged as an influential communication tool with extensive applications across numerous fields, including entertainment, marketing, mental state monitoring, and particularly medical neurorehabilitation. Despite its immense potential, the reliability of BCI systems is challenged by the intricacies of data collection, environmental factors, and noisy interferences, making the interpretation of high-dimensional electroencephalogram (EEG) data a pressing issue. While the current trends in research have leant towards improving classification using deep learning-based models, our study proposes the use of new features based on EEG amplitude modulation (AM) dynamics. Experiments on an active BCI dataset comprised seven mental tasks to show the importance of the proposed features, as well as their complementarity to conventional power spectral features. Through combining the seven mental tasks, 21 binary classification tests were explored. In 17 of these 21 tests, the addition of the proposed features significantly improved classifier performance relative to using power spectral density (PSD) features only. Specifically, the average kappa score for these classifications increased from 0.57 to 0.62 using the combined feature set. An examination of the top-selected features showed the predominance of the AM-based measures, comprising over 77% of the top-ranked features. We conclude this paper with an in-depth analysis of these top-ranked features and discuss their potential for use in neurophysiology.
Collapse
Affiliation(s)
- Olivier Rosanne
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil;
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| |
Collapse
|
5
|
Karmakar S, Kamilya S, Dey P, Guhathakurta PK, Dalui M, Bera TK, Halder S, Koley C, Pal T, Basu A. Real time detection of cognitive load using fNIRS: A deep learning approach. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Chawla P, Rana SB, Kaur H, Singh K, Yuvaraj R, Murugappan M. A decision support system for automated diagnosis of Parkinson’s disease from EEG using FAWT and entropy features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Aydemir E, Baygin M, Dogan S, Tuncer T, Barua PD, Chakraborty S, Faust O, Arunkumar N, Kaysi F, Acharya UR. Mental performance classification using fused multilevel feature generation with EEG signals. INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT 2022. [DOI: 10.1080/20479700.2022.2130645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Emrah Aydemir
- Department of Management Information, College of Management, Sakarya University, Sakarya, Turkey
| | - Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Darling Heights, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, Australia
- Center for Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Oliver Faust
- School of Computing, Anglia Ruskin University, Cambridge, UK
| | - N. Arunkumar
- Department of Electronics and Instrumentation, SASTRA University, Thanjavur, India
| | - Feyzi Kaysi
- Department of Electronic and Automation, Vocational School of Technical Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Tripathy RK, Paternina MA, de la O Serna JA. Editorial: Machine Learning and Deep Learning for Physiological Signal Analysis. Front Physiol 2022; 13:887070. [PMID: 35492610 PMCID: PMC9043552 DOI: 10.3389/fphys.2022.887070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rajesh Kumar Tripathy
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
- *Correspondence: Rajesh Kumar Tripathy,
| | - Mario Arrieta Paternina
- Department of Electrical Engineering, National Autonomous University of Mexico, México City, Mexico
| | - José Antonio de la O Serna
- Department of Electrical Engineering, Autonomous University of Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
9
|
XU WANSONG, CHEN TIANWU, DU FANYU. TWO-LEAD JOINT DETECTION ALGORITHM OF QRS COMPLEXES IN ECG SIGNAL. J MECH MED BIOL 2021; 21. [DOI: 10.1142/s0219519421400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.
Collapse
Affiliation(s)
- WANSONG XU
- Medical Imaging Department, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - TIANWU CHEN
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - FANYU DU
- Medical Imaging Department, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
10
|
Radhakrishnan T, Karhade J, Ghosh SK, Muduli PR, Tripathy RK, Acharya UR. AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals. Comput Biol Med 2021; 137:104783. [PMID: 34481184 DOI: 10.1016/j.compbiomed.2021.104783] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and is characterized by the heart's beating in an uncoordinated manner. In clinical studies, patients often do not have visible symptoms during AF, and hence it is harder to detect this cardiac ailment. Therefore, automated detection of AF using the electrocardiogram (ECG) signals can reduce the risk of stroke, coronary artery disease, and other cardiovascular complications. In this paper, a novel time-frequency domain deep learning-based approach is proposed to detect AF and classify terminating and non-terminating AF episodes using ECG signals. This approach involves evaluating the time-frequency representation (TFR) of ECG signals using the chirplet transform. The two-dimensional (2D) deep convolutional bidirectional long short-term memory (BLSTM) neural network model is used to detect and classify AF episodes using the time-frequency images of ECG signals. The proposed TFR based 2D deep learning approach is evaluated using the ECG signals from three public databases. Our developed approach has obtained an accuracy, sensitivity, and specificity of 99.18% (Confidence interval (CI) as [98.86, 99.49]), 99.17% (CI as [98.85 99.49]), and 99.18% (CI as [98.86 99.49]), respectively, with 10-fold cross-validation (CV) technique to detect AF automatically. The proposed approach also classified terminating and non-terminating AF episodes with an average accuracy of 75.86%. The average accuracy value obtained using the proposed approach is higher than the short-time Fourier transform (STFT), discrete-time continuous wavelet transform (DT-CWT), and Stockwell transform (ST) based time-frequency analysis methods with deep convolutional BLSTM models to detect AF. The proposed approach has better AF detection performance than the existing deep learning-based techniques using ECG signals from the MIT-BIH database.
Collapse
Affiliation(s)
- Tejas Radhakrishnan
- Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Jay Karhade
- Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - S K Ghosh
- Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - P R Muduli
- Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - R K Tripathy
- Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
| |
Collapse
|
11
|
Zarzycki K, Ławryńczuk M. LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors. SENSORS (BASEL, SWITZERLAND) 2021; 21:5625. [PMID: 34451065 PMCID: PMC8402357 DOI: 10.3390/s21165625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
This work thoroughly compares the efficiency of Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Unit (GRU) neural networks as models of the dynamical processes used in Model Predictive Control (MPC). Two simulated industrial processes were considered: a polymerisation reactor and a neutralisation (pH) process. First, MPC prediction equations for both types of models were derived. Next, the efficiency of the LSTM and GRU models was compared for a number of model configurations. The influence of the order of dynamics and the number of neurons on the model accuracy was analysed. Finally, the efficiency of the considered models when used in MPC was assessed. The influence of the model structure on different control quality indicators and the calculation time was discussed. It was found that the GRU network, although it had a lower number of parameters than the LSTM one, may be successfully used in MPC without any significant deterioration of control quality.
Collapse
Affiliation(s)
- Krzysztof Zarzycki
- Faculty of Electronics and Information Technology, Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland;
| | | |
Collapse
|
12
|
Machine Learning-Based Data-Driven Fault Detection/Diagnosis of Lithium-Ion Battery: A Critical Review. ELECTRONICS 2021. [DOI: 10.3390/electronics10111309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fault detection/diagnosis has become a crucial function of the battery management system (BMS) due to the increasing application of lithium-ion batteries (LIBs) in highly sophisticated and high-power applications to ensure the safe and reliable operation of the system. The application of Machine Learning (ML) in the BMS of LIB has long been adopted for efficient, reliable, accurate prediction of several important states of LIB such as state of charge, state of health and remaining useful life. Inspired by some of the promising features of ML-based techniques over the conventional LIB fault detection/diagnosis methods such as model-based, knowledge-based and signal processing-based techniques, ML-based data-driven methods have been a prime research focus in the last few years. This paper provides a comprehensive review exclusively on the state-of-the-art ML-based data-driven fault detection/diagnosis techniques to provide a ready reference and direction to the research community aiming towards developing an accurate, reliable, adaptive and easy to implement fault diagnosis strategy for the LIB system. Current issues of existing strategies and future challenges of LIB fault diagnosis are also explained for better understanding and guidance.
Collapse
|