Taha BA, Addie AJ, Chahal S, Haider AJ, Rustagi S, Arsad N, Chaudhary V. Unlocking new frontiers in healthcare: The impact of nano-optical biosensors on personalized medical diagnostics.
J Biotechnol 2025;
400:29-47. [PMID:
39961549 DOI:
10.1016/j.jbiotec.2025.02.005]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/06/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Nano-optical biosensors have emerged as transformative tools in healthcare and clinical research, offering rapid, portable, and specific diagnostic solutions. This review critically analyzes the recent advancements, translational challenges, and sustainable approaches in nano-optical biosensor implementation for biomedical applications. We explore the integration of innovative nanomaterials, microelectronics, and molecular biology techniques that have significantly enhanced biosensor sensitivity and specificity, enabling detection of biomarkers ranging from cancer indicators to cardiovascular markers. The potential of nanoplasmonic and silicon photonic biosensors in overcoming current limitations is discussed, alongside the promising integration of artificial intelligence and Internet of Things technologies for improved data analytics and clinical validation. We address key challenges, including size constraints, energy efficiency, and integration with existing technologies, and propose sustainable strategies for eco-friendly materials, energy-efficient designs, and circular economy approaches. The review also examines emerging trends such as multiplexed sensing platforms, wearable biosensors, and their applications in personalized medicine. By critically assessing these developments, we provide insights into the prospects of nano-optical biosensors and their potential to revolutionize point-of-care diagnostics and personalized healthcare, while emphasizing the need for interdisciplinary collaboration to overcome remaining obstacles in translating these technologies from laboratory research to real-world clinical applications.
Collapse