1
|
Zhu B, Zhou Z, Yu S, Liang X, Xie Y, Sun Q. Review of Phonocardiogram Signal Analysis: Insights from the PhysioNet/CinC Challenge 2016 Database. ELECTRONICS 2024; 13:3222. [DOI: 10.3390/electronics13163222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The phonocardiogram (PCG) is a crucial tool for the early detection, continuous monitoring, accurate diagnosis, and efficient management of cardiovascular diseases. It has the potential to revolutionize cardiovascular care and improve patient outcomes. The PhysioNet/CinC Challenge 2016 database, a large and influential resource, encourages contributions to accurate heart sound state classification (normal versus abnormal), achieving promising benchmark performance (accuracy: 99.80%; sensitivity: 99.70%; specificity: 99.10%; and score: 99.40%). This study reviews recent advances in analytical techniques applied to this database, and 104 publications on PCG signal analysis are retrieved. These techniques encompass heart sound preprocessing, signal segmentation, feature extraction, and heart sound state classification. Specifically, this study summarizes methods such as signal filtering and denoising; heart sound segmentation using hidden Markov models and machine learning; feature extraction in the time, frequency, and time-frequency domains; and state-of-the-art heart sound state recognition techniques. Additionally, it discusses electrocardiogram (ECG) feature extraction and joint PCG and ECG heart sound state recognition. Despite significant technical progress, challenges remain in large-scale high-quality data collection, model interpretability, and generalizability. Future directions include multi-modal signal fusion, standardization and validation, automated interpretation for decision support, real-time monitoring, and longitudinal data analysis. Continued exploration and innovation in heart sound signal analysis are essential for advancing cardiac care, improving patient outcomes, and enhancing user trust and acceptance.
Collapse
Affiliation(s)
- Bing Zhu
- School of Information and Communication Engineering, Communication University of China, Beijing 100024, China
| | - Zihong Zhou
- School of Information and Communication Engineering, Communication University of China, Beijing 100024, China
| | - Shaode Yu
- School of Information and Communication Engineering, Communication University of China, Beijing 100024, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiurui Sun
- Center of Information & Network Technology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Gharaibeh NY, De Fazio R, Al-Naami B, Al-Hinnawi AR, Visconti P. Automated Lung Cancer Diagnosis Applying Butterworth Filtering, Bi-Level Feature Extraction, and Sparce Convolutional Neural Network to Luna 16 CT Images. J Imaging 2024; 10:168. [PMID: 39057739 PMCID: PMC11277772 DOI: 10.3390/jimaging10070168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Accurate prognosis and diagnosis are crucial for selecting and planning lung cancer treatments. As a result of the rapid development of medical imaging technology, the use of computed tomography (CT) scans in pathology is becoming standard practice. An intricate interplay of requirements and obstacles characterizes computer-assisted diagnosis, which relies on the precise and effective analysis of pathology images. In recent years, pathology image analysis tasks such as tumor region identification, prognosis prediction, tumor microenvironment characterization, and metastasis detection have witnessed the considerable potential of artificial intelligence, especially deep learning techniques. In this context, an artificial intelligence (AI)-based methodology for lung cancer diagnosis is proposed in this research work. As a first processing step, filtering using the Butterworth smooth filter algorithm was applied to the input images from the LUNA 16 lung cancer dataset to remove noise without significantly degrading the image quality. Next, we performed the bi-level feature selection step using the Chaotic Crow Search Algorithm and Random Forest (CCSA-RF) approach to select features such as diameter, margin, spiculation, lobulation, subtlety, and malignancy. Next, the Feature Extraction step was performed using the Multi-space Image Reconstruction (MIR) method with Grey Level Co-occurrence Matrix (GLCM). Next, the Lung Tumor Severity Classification (LTSC) was implemented by using the Sparse Convolutional Neural Network (SCNN) approach with a Probabilistic Neural Network (PNN). The developed method can detect benign, normal, and malignant lung cancer images using the PNN algorithm, which reduces complexity and efficiently provides classification results. Performance parameters, namely accuracy, precision, F-score, sensitivity, and specificity, were determined to evaluate the effectiveness of the implemented hybrid method and compare it with other solutions already present in the literature.
Collapse
Affiliation(s)
- Nasr Y. Gharaibeh
- Department of Electrical Engineering, Al-Balqa Applied University, Salt 21163, Jordan;
| | - Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy;
| | - Bassam Al-Naami
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan;
| | - Abdel-Razzak Al-Hinnawi
- Department of Medical Imaging, Faculty of Allied Medical Sciences, Isra University, Amman 11622, Jordan;
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
3
|
De Fazio R, Spongano L, De Vittorio M, Patrono L, Visconti P. Machine Learning Algorithms for Processing and Classifying Unsegmented Phonocardiographic Signals: An Efficient Edge Computing Solution Suitable for Wearable Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3853. [PMID: 38931636 PMCID: PMC11207414 DOI: 10.3390/s24123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The phonocardiogram (PCG) can be used as an affordable way to monitor heart conditions. This study proposes the training and testing of several classifiers based on SVMs (support vector machines), k-NN (k-Nearest Neighbor), and NNs (neural networks) to perform binary ("Normal"/"Pathologic") and multiclass ("Normal", "CAD" (coronary artery disease), "MVP" (mitral valve prolapse), and "Benign" (benign murmurs)) classification of PCG signals, without heart sound segmentation algorithms. Two datasets of 482 and 826 PCG signals from the Physionet/CinC 2016 dataset are used to train the binary and multiclass classifiers, respectively. Each PCG signal is pre-processed, with spike removal, denoising, filtering, and normalization; afterward, it is divided into 5 s frames with a 1 s shift. Subsequently, a feature set is extracted from each frame to train and test the binary and multiclass classifiers. Concerning the binary classification, the trained classifiers yielded accuracies ranging from 92.4 to 98.7% on the test set, with memory occupations from 92.7 kB to 11.1 MB. Regarding the multiclass classification, the trained classifiers achieved accuracies spanning from 95.3 to 98.6% on the test set, occupying a memory portion from 233 kB to 14.1 MB. The NNs trained and tested in this work offer the best trade-off between performance and memory occupation, whereas the trained k-NN models obtained the best performance at the cost of large memory occupation (up to 14.1 MB). The classifiers' performance slightly depends on the signal quality, since a denoising step is performed during pre-processing. To this end, the signal-to-noise ratio (SNR) was acquired before and after the denoising, indicating an improvement between 15 and 30 dB. The trained and tested models occupy relatively little memory, enabling their implementation in resource-limited systems.
Collapse
Affiliation(s)
- Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
| | - Lorenzo Spongano
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| | - Luigi Patrono
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy; (R.D.F.); (L.S.); (M.D.V.); (L.P.)
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy
| |
Collapse
|
4
|
Social Media Devices' Influence on User Neck Pain during the COVID-19 Pandemic: Collaborating Vertebral-GLCM Extracted Features with a Decision Tree. J Imaging 2023; 9:jimaging9010014. [PMID: 36662112 PMCID: PMC9867361 DOI: 10.3390/jimaging9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
The prevalence of neck pain, a chronic musculoskeletal disease, has significantly increased due to the uncontrollable use of social media (SM) devices. The use of SM devices by younger generations increased enormously during the COVID-19 pandemic, being-in some cases-the only possibility for maintaining interpersonal, social, and friendship relationships. This study aimed to predict the occurrence of neck pain and its correlation with the intensive use of SM devices. It is based on nine quantitative parameters extracted from the retrospective X-ray images. The three parameters related to angle_1 (i.e., the angle between the global horizontal and the vector pointing from C7 vertebra to the occipito-cervical joint), angle_2 (i.e., the angle between the global horizontal and the vector pointing from C1 vertebra to the occipito-cervical joint), and the area between them were measured from the shape of the neck vertebrae, while the rest of the parameters were extracted from the images using the gray-level co-occurrence matrix (GLCM). In addition, the users' ages and the duration of the SM usage (H.mean) were also considered. The decision tree (DT) machine-learning algorithm was employed to predict the abnormal cases (painful subjects) against the normal ones (no pain). The results showed that angle_1, area, and the image contrast significantly increased statistically with the time of SM-device usage, precisely in the range of 2 to 9 h. The DT showed a promising result demonstrated by classification accuracy and F1-scores of 94% and 0.95, respectively. Our findings confirmed that the objectively detected parameters, which elucidate the negative impacts of SM-device usage on neck pain, can be predicted by DT machine learning.
Collapse
|
5
|
Assessment of Multi-Layer Perceptron Neural Network for Pulmonary Function Test’s Diagnosis Using ATS and ERS Respiratory Standard Parameters. COMPUTERS 2022. [DOI: 10.3390/computers11090130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the research work is to investigate the operability of the entire 23 pulmonary function parameters, which are stipulated by the American Thoracic Society (ATS) and the European Respiratory Society (ERS), to design a medical decision support system capable of classifying the pulmonary function tests into normal, obstructive, restrictive, or mixed cases. The 23 respiratory parameters specified by the ATS and the ERS guidelines, obtained from the Pulmonary Function Test (PFT) device, were employed as input features to a Multi-Layer Perceptron (MLP) neural network. Thirteen possible MLP Back Propagation (BP) algorithms were assessed. Three different categories of respiratory diseases were evaluated, namely obstructive, restrictive, and mixed conditions. The framework was applied on 201 PFT examinations: 103 normal and 98 abnormal cases. The PFT decision support system’s outcomes were compared with both the clinical truth (physician decision) and the PFT built-in diagnostic software. It yielded 92–99% and 87–92% accuracies on the training and the test sets, respectively. An 88–94% area under the receiver operating characteristic curve (ROC) was recorded on the test set. The system exceeded the performance of the PFT machine by 9%. All 23 ATS\ERS standard PFT parameters can be used as inputs to design a PFT decision support system, yielding a favorable performance compared with the literature and the PFT machine’s diagnosis program.
Collapse
|
6
|
Automated Detection of Left Bundle Branch Block from ECG Signal Utilizing the Maximal Overlap Discrete Wavelet Transform with ANFIS. COMPUTERS 2022. [DOI: 10.3390/computers11060093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Left bundle branch block (LBBB) is a common disorder in the heart’s electrical conduction system that leads to the ventricles’ uncoordinated contraction. The complete LBBB is usually associated with underlying heart failure and other cardiac diseases. Therefore, early automated detection is vital. This work aimed to detect the LBBB through the QRS electrocardiogram (ECG) complex segments taken from the MIT-BIH arrhythmia database. The used data contain 2655 LBBB (abnormal) and 1470 normal signals (i.e., 4125 total signals). The proposed method was employed in the following steps: (i) QRS segmentation and filtration, (ii) application of the Maximal Overlapped Discrete Wavelet Transform (MODWT) on the ECG R wave, (iii) selection of the detailed coefficients of the MODWT (D2, D3, D4), kurtosis, and skewness as extracted features to be fed into the Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier. The obtained results proved that the proposed method performed well based on the achieved sensitivity, specificity, and classification accuracies of 99.81%, 100%, and 99.88%, respectively (F-Score is equal to 0.9990). Our results showed that the proposed method was robust and effective and could be used in real clinical situations.
Collapse
|