1
|
Yang G, Kang Y, Charlton PH, Kyriacou PA, Kim KK, Li L, Park C. Energy-Efficient PPG-Based Respiratory Rate Estimation Using Spiking Neural Networks. SENSORS (BASEL, SWITZERLAND) 2024; 24:3980. [PMID: 38931763 PMCID: PMC11207339 DOI: 10.3390/s24123980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Respiratory rate (RR) is a vital indicator for assessing the bodily functions and health status of patients. RR is a prominent parameter in the field of biomedical signal processing and is strongly associated with other vital signs such as blood pressure, heart rate, and heart rate variability. Various physiological signals, such as photoplethysmogram (PPG) signals, are used to extract respiratory information. RR is also estimated by detecting peak patterns and cycles in the signals through signal processing and deep-learning approaches. In this study, we propose an end-to-end RR estimation approach based on a third-generation artificial neural network model-spiking neural network. The proposed model employs PPG segments as inputs, and directly converts them into sequential spike events. This design aims to reduce information loss during the conversion of the input data into spike events. In addition, we use feedback-based integrate-and-fire neurons as the activation functions, which effectively transmit temporal information. The network is evaluated using the BIDMC respiratory dataset with three different window sizes (16, 32, and 64 s). The proposed model achieves mean absolute errors of 1.37 ± 0.04, 1.23 ± 0.03, and 1.15 ± 0.07 for the 16, 32, and 64 s window sizes, respectively. Furthermore, it demonstrates superior energy efficiency compared with other deep learning models. This study demonstrates the potential of the spiking neural networks for RR monitoring, offering a novel approach for RR estimation from the PPG signal.
Collapse
Affiliation(s)
- Geunbo Yang
- Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (G.Y.); (Y.K.)
| | - Youngshin Kang
- Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (G.Y.); (Y.K.)
| | - Peter H. Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Panayiotis A. Kyriacou
- Department of Engineering, School of Science and Technology (SST), City University of London, London EC1V 0HB, UK;
| | - Ko Keun Kim
- AI Lab, LG Electronics, Seoul 06763, Republic of Korea;
| | - Ling Li
- Department of Engineering, School of Science and Technology (SST), City University of London, London EC1V 0HB, UK;
| | - Cheolsoo Park
- Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (G.Y.); (Y.K.)
| |
Collapse
|
2
|
Li F, Li D, Wang C, Liu G, Wang R, Ren H, Tang Y, Wang Y, Chen Y, Liang K, Huang Q, Sawan M, Qiu M, Wang H, Zhu B. An artificial visual neuron with multiplexed rate and time-to-first-spike coding. Nat Commun 2024; 15:3689. [PMID: 38693165 PMCID: PMC11063071 DOI: 10.1038/s41467-024-48103-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Human visual neurons rely on event-driven, energy-efficient spikes for communication, while silicon image sensors do not. The energy-budget mismatch between biological systems and machine vision technology has inspired the development of artificial visual neurons for use in spiking neural network (SNN). However, the lack of multiplexed data coding schemes reduces the ability of artificial visual neurons in SNN to emulate the visual perception ability of biological systems. Here, we present an artificial visual spiking neuron that enables rate and temporal fusion (RTF) coding of external visual information. The artificial neuron can code visual information at different spiking frequencies (rate coding) and enables precise and energy-efficient time-to-first-spike (TTFS) coding. This multiplexed sensory coding scheme could improve the computing capability and efficacy of artificial visual neurons. A hardware-based SNN with the RTF coding scheme exhibits good consistency with real-world ground truth data and achieves highly accurate steering and speed predictions for self-driving vehicles in complex conditions. The multiplexed RTF coding scheme demonstrates the feasibility of developing highly efficient spike-based neuromorphic hardware.
Collapse
Affiliation(s)
- Fanfan Li
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Chuanqing Wang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, China
| | - Guolei Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Rui Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Yingjie Tang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Yan Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Yitong Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Kun Liang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Qi Huang
- Westlake Institute for Optoelectronics, Westlake University, Hangzhou, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, China
- Westlake Institute for Optoelectronics, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
- Westlake Institute for Optoelectronics, Westlake University, Hangzhou, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Hong Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, China.
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.
- Westlake Institute for Optoelectronics, Westlake University, Hangzhou, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
3
|
Zhang Y, Xiang S, Jiang S, Han Y, Guo X, Zheng L, Shi Y, Hao Y. Hybrid photonic deep convolutional residual spiking neural networks for text classification. OPTICS EXPRESS 2023; 31:28489-28502. [PMID: 37710902 DOI: 10.1364/oe.497218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023]
Abstract
Spiking neural networks (SNNs) offer powerful computation capability due to its event-driven nature and temporal processing. However, it is still limited to shallow structure and simple tasks due to the training difficulty. In this work, we propose a deep convolutional residual spiking neural network (DCRSNN) for text classification tasks. In the DCRSNN, the feature extraction is achieved via a convolution SNN with residual connection, using the surrogate gradient direct training technique. Classification is performed by a fully-connected network. We also suggest a hybrid photonic DCRSNN, in which photonic SNNs are used for classification with a converted training method. The accuracy of hard and soft reset methods, as well as three different surrogate functions, were evaluated and compared across four different datasets. Results indicated a maximum accuracy of 76.36% for MR, 91.03% for AG News, 88.06% for IMDB and 93.99% for Yelp review polarity. Soft reset methods used in the deep convolutional SNN yielded slightly better accuracy than their hard reset counterparts. We also considered the effects of different pooling methods and observation time windows and found that the convergence accuracy achieved by convolutional SNNs was comparable to that of convolutional neural networks under the same conditions. Moreover, the hybrid photonic DCRSNN also shows comparable testing accuracy. This work provides new insights into extending the SNN applications in the field of text classification and natural language processing, which is interesting for the resources-restrained scenarios.
Collapse
|
4
|
Zhang Y, Xiang S, Han Y, Guo X, Zhang W, Tan Q, Han G, Hao Y. BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation. OPTICS EXPRESS 2023; 31:16549-16559. [PMID: 37157731 DOI: 10.1364/oe.487047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing.
Collapse
|
5
|
Xiao C, Chen J, Wang L. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI. SENSORS (BASEL, SWITZERLAND) 2022; 22:7248. [PMID: 36236344 PMCID: PMC9572825 DOI: 10.3390/s22197248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Neuromorphic hardware, the new generation of non-von Neumann computing system, implements spiking neurons and synapses to spiking neural network (SNN)-based applications. The energy-efficient property makes the neuromorphic hardware suitable for power-constrained environments where sensors and edge nodes of the internet of things (IoT) work. The mapping of SNNs onto neuromorphic hardware is challenging because a non-optimized mapping may result in a high network-on-chip (NoC) latency and energy consumption. In this paper, we propose NeuMap, a simple and fast toolchain, to map SNNs onto the multicore neuromorphic hardware. NeuMap first obtains the communication patterns of an SNN by calculation that simplifies the mapping process. Then, NeuMap exploits localized connections, divides the adjacent layers into a sub-network, and partitions each sub-network into multiple clusters while meeting the hardware resource constraints. Finally, we employ a meta-heuristics algorithm to search for the best cluster-to-core mapping scheme in the reduced searching space. We conduct experiments using six realistic SNN-based applications to evaluate NeuMap and two prior works (SpiNeMap and SNEAP). The experimental results show that, compared to SpiNeMap and SNEAP, NeuMap reduces the average energy consumption by 84% and 17% and has 55% and 12% lower spike latency, respectively.
Collapse
|
6
|
Direct Training via Backpropagation for Ultra-Low-Latency Spiking Neural Networks with Multi-Threshold. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spiking neural networks (SNNs) can utilize spatio-temporal information and have the characteristic of energy efficiency, being a good alternative to deep neural networks (DNNs). The event-driven information processing means that SNNs can reduce the expensive computation of DNNs and save a great deal of energy consumption. However, high training and inference latency is a limitation of the development of deeper SNNs. SNNs usually need tens or even hundreds of time steps during the training and inference process, which causes not only an increase in latency but also excessive energy consumption. To overcome this problem, we propose a novel training method based on backpropagation (BP) for ultra-low-latency (1–2 time steps) SNNs with multi-threshold. In order to increase the information capacity of each spike, we introduce the multi-threshold Leaky Integrate and Fired (LIF) model. The experimental results show that our proposed method achieves average accuracy of 99.56%, 93.08%, and 87.90% on MNIST, FashionMNIST, and CIFAR10, respectively, with only two time steps. For the CIFAR10 dataset, our proposed method achieves 1.12% accuracy improvement over the previously reported directly trained SNNs with fewer time steps.
Collapse
|