1
|
Rooftop Solar PV Penetration Impacts on Distribution Network and Further Growth Factors—A Comprehensive Review. ELECTRONICS 2020. [DOI: 10.3390/electronics10010055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.
Collapse
|
2
|
A Hybrid Fault Recognition Algorithm Using Stockwell Transform and Wigner Distribution Function for Power System Network with Solar Energy Penetration. ENERGIES 2020. [DOI: 10.3390/en13143519] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Penetration level of solar photovoltaic (PV) energy in the utility network is steadily increasing. This changes the fault level and causes protection problems. Furthermore, multi-tapped structure of distribution network deployed to integrate solar PV energy to the grid and supplying loads at the same time also raised the protection challenges. Hence, this manuscript is aimed at introducing an algorithm to identify and classify the faults incident on the network of utilities where penetration level of the solar PV energy is high. This fault recognition algorithm is implemented in four steps: (1) calculation of Stockwell transform-based fault index (STFI) (2) calculation of Wigner distribution function-based fault index (WDFI) (3) calculation of combined fault index (CFI) by multiplying STFI and WDFI (4) calculation of index for ground fault (IGF) used to recognize the involvement of ground in a fault event. The STFI has the merits that its performance is least affected by the noise associated with the current signals and it is effective in identification of the waveform distortions. The WDFI employs energy density of the current signals for estimation of the faults and takes care of the current magnitude. Hence, CFI has the merit that it considers the current magnitude as well as waveform distortion for recognition of the faults. The classification of faults is achieved using the number of faulty phases. An index for ground fault (IGF) based on currents of zero sequence is proposed to classify the two phase faults with and without the ground engagement. Investigated faults include phase to ground, two phases fault without involving ground, two phases fault involving ground and three phase fault. Fault recognition algorithm is tested for fault recognition with the presence of noise, various angles of fault incidence, different impedances involved during faulty event, hybrid lines consisting of overhead line (OHL) and underground cable (UGC) sections, and location of faults on all nodes of the test grid. Fault recognition algorithm is also tested to discriminate the transients due to switching operations of feeders, loads and capacitor banks from the faulty transients. Performance of the fault recognition algorithm is compared with the algorithms based on discrete wavelet transform (DWT), Stockwell transform (ST) and hybrid combination of alienation coefficient and Wigner distribution function (WDF). Effectiveness of the fault recognition algorithm is established using a detailed study on the IEEE-13 nodes test feeder modified to incorporate solar PV plant of capacity 1 MW in MATLAB/Simulink. Algorithm is also validated on practical utility grid of Rajasthan State of India.
Collapse
|
3
|
Abstract
Digital flicker detection devices need to store a large amount of evaluation data during measurement process, which leads to high requirements for hardware resources and algorithm execution efficiency. In this paper, a digital flicker detection method based on probability resampling is studied. In particular, before statistical evaluation, probability resampling is applied to screen the instantaneous flicker visual sensitivity data to compress redundant data. Additionally, the effectiveness of the method was numerically simulated and experimentally tested. The results show that the proposed method can accurately measure the voltage flicker value and can effectively compress the redundant evaluation data to be evaluated and has significant advantages in releasing hardware storage space, in improving algorithm execution efficiency and real-time performance, and in reducing processor workload. This method provides an engineering application reference for designing digital flicker detectors, especially for the software upgrade of traditional power quality testing equipment.
Collapse
|