1
|
A New Beamforming Approach Using 60 GHz Antenna Arrays for Multi-Beams 5G Applications. ELECTRONICS 2022. [DOI: 10.3390/electronics11111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies and research have centred on new solutions in different elements and stages to the increasing energy and data rate demands for the fifth generation and beyond (B5G). Based on a new-efficient digital beamforming approach for 5G wireless communication networks, this work offers a compact-size circular patch antenna operating at 60 GHz and covering a 4 GHz spectrum bandwidth. Massive Multiple Input Multiple Output (M–MIMO) and beamforming technology build and simulate an active multiple beams antenna system. Thirty-two linear and sixty-four planar antenna array configurations are modelled and constructed to work as base stations for 5G mobile communication networks. Furthermore, a new beamforming approach called Projection Noise Correlation Matrix (PNCM) is presented to compute and optimise the fed weights of the array elements. The key idea of the PNCM method is to sample a portion of the measured noise correlation matrix uniformly in order to provide the best representation of the entire measured matrix. The sampled data will then be utilised to build a projected matrix using the pseudoinverse approach in order to determine the best fit solution for a system and prevent any potential singularities caused by the matrix inversion process. The PNCM is a low-complexity method since it avoids eigenvalue decomposition and computing the entire matrix inversion procedure and does not require including signal and interference correlation matrices in the weight optimisation process. The suggested approach is compared to three standard beamforming methods based on an intensive Monte Carlo simulation to demonstrate its advantage. The experiment results reveal that the proposed method delivers the best Signal to Interference Ratio (SIR) augmentation among the compared beamformers.
Collapse
|
2
|
Sound Localization Based on Acoustic Source Using Multiple Microphone Array in an Indoor Environment. ELECTRONICS 2022. [DOI: 10.3390/electronics11060890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sound signals have been widely applied in various fields. One of the popular applications is sound localization, where the location and direction of a sound source are determined by analyzing the sound signal. In this study, two microphone linear arrays were used to locate the sound source in an indoor environment. The TDOA is also designed to deal with the problem of delay in the reception of sound signals from two microphone arrays by using the generalized cross-correlation algorithm to calculate the TDOA. The proposed microphone array system with the algorithm can successfully estimate the sound source’s location. The test was performed in a standardized chamber. This experiment used two microphone arrays, each with two microphones. The experimental results prove that the proposed method can detect the sound source and obtain good performance with a position error of about 2.0~2.3 cm and angle error of about 0.74 degrees. Therefore, the experimental results demonstrate the feasibility of the system.
Collapse
|