1
|
Kumar V, Alam MN, Manik G, Park SS. Recent Advancements in Rubber Composites for Physical Activity Monitoring Sensors: A Critical Review. Polymers (Basel) 2025; 17:1085. [PMID: 40284349 PMCID: PMC12030466 DOI: 10.3390/polym17081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides the latest insight (2020 to 2025) for composite-based physical activity monitoring sensors. These composite materials are based on carbon-reinforced silicone rubber. These composites feature the use of composite materials, thereby allowing the creation of new generation non-invasive sensors for monitoring of sports activity. These physical sports activities include running, cycling, or swimming. The review describes a brief overview of carbon nanomaterials and silicone rubber-based composites. Then, the prospects of such sensors in terms of mechanical and electrical properties are described. Here, a special focus on electrical properties like resistance change, response time, and gauge factor are reported. Finally, the review reports a brief overview of the industrial uses of these sensors. Some aspects are sports activities like boxing or physical activities like walking, squatting, or running. Lastly, the main aspect of fracture toughness for obtaining high sensor durability is reviewed. Finally, the key challenges in material stability, scalability, and integration of multifunctional aspects of these composite sensors are addressed. Moreover, the future research prospects are described for these composite-based sensors, along with their advantages and limitations.
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (V.K.); (M.N.A.)
| | - Md Najib Alam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (V.K.); (M.N.A.)
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India;
| | - Sang-Shin Park
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (V.K.); (M.N.A.)
| |
Collapse
|
2
|
Szabo DA, Neagu N, Teodorescu S, Apostu M, Predescu C, Pârvu C, Veres C. The Role and Importance of Using Sensor-Based Devices in Medical Rehabilitation: A Literature Review on the New Therapeutic Approaches. SENSORS (BASEL, SWITZERLAND) 2023; 23:8950. [PMID: 37960649 PMCID: PMC10648494 DOI: 10.3390/s23218950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Due to the growth of sensor technology, more affordable integrated circuits, and connectivity technologies, the usage of wearable equipment and sensing devices for monitoring physical activities, whether for wellness, sports monitoring, or medical rehabilitation, has exploded. The current literature review was performed between October 2022 and February 2023 using PubMed, Web of Science, and Scopus in accordance with P.R.I.S.M.A. criteria. The screening phase resulted in the exclusion of 69 articles that did not fit the themes developed in all subchapters of the study, 41 articles that dealt exclusively with rehabilitation and orthopaedics, 28 articles whose abstracts were not visible, and 10 articles that dealt exclusively with other sensor-based devices and not medical ones; the inclusion phase resulted in the inclusion of 111 articles. Patients who utilise sensor-based devices have several advantages due to rehabilitating a missing component, which marks the accomplishment of a fundamental goal within the rehabilitation program. As technology moves faster and faster forward, the field of medical rehabilitation has to adapt to the time we live in by using technology and intelligent devices. This means changing every part of rehabilitation and finding the most valuable and helpful gadgets that can be used to regain lost functions, keep people healthy, or prevent diseases.
Collapse
Affiliation(s)
- Dan Alexandru Szabo
- Department of Human Movement Sciences, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department ME1, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Nicolae Neagu
- Department of Human Movement Sciences, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Silvia Teodorescu
- Department of Doctoral Studies, National University of Physical Education and Sports, 060057 Bucharest, Romania;
| | - Mihaela Apostu
- Department of Special Motor and Rehabilitation Medicine, National University of Physical Education and Sports, 060057 Bucharest, Romania; (M.A.); (C.P.)
| | - Corina Predescu
- Department of Special Motor and Rehabilitation Medicine, National University of Physical Education and Sports, 060057 Bucharest, Romania; (M.A.); (C.P.)
| | - Carmen Pârvu
- Faculty of Physical Education and Sports, “Dunărea de Jos” University, 63-65 Gării Street, 337347 Galati, Romania;
| | - Cristina Veres
- Department of Industrial Engineering and Management, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Deb R, An S, Bhat G, Shill H, Ogras UY. A Systematic Survey of Research Trends in Technology Usage for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:5491. [PMID: 35897995 PMCID: PMC9371095 DOI: 10.3390/s22155491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist's subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018-2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community's growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications.
Collapse
Affiliation(s)
| | - Sizhe An
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Ganapati Bhat
- School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA 99164, USA;
| | - Holly Shill
- Lonnie and Muhammad Ali Movement Disorder Center, Phoenix, AZ 85013, USA;
| | - Umit Y. Ogras
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
4
|
Vila-Viçosa D, Leitão M, Bouça-Machado R, Pona-Ferreira F, Alberto S, Ferreira JJ, Matias R. Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine. J Pers Med 2022; 12:jpm12050826. [PMID: 35629247 PMCID: PMC9143184 DOI: 10.3390/jpm12050826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Ecological evaluation of gait using mobile technologies provides crucial information regarding the evolution of symptoms in Parkinson’s disease (PD). However, the reliability and validity of such information may be influenced by the smartphone’s location on the body. This study analyzed how the smartphone location affects the assessment of PD patients’ gait in a free-living environment. Twenty PD patients (mean ± SD age, 64.3 ± 10.6 years; 9 women (45%) performed 3 trials of a 250 m outdoor walk using smartphones in 5 different body locations (pants pocket, belt, hand, shirt pocket, and a shoulder bag). A method to derive gait-related metrics from smartphone sensors is presented, and its reliability is evaluated between different trials as well as its concurrent validity against optoelectronic and smartphone criteria. Excellent relative reliability was found with all intraclass correlation coefficient values above or equal to 0.85. High absolute reliability was observed in 21 out of 30 comparisons. Bland-Altman analysis revealed a high level of agreement (LoA between 4.4 and 17.5%), supporting the use of the presented method. This study advances the use of mobile technology to accurately and reliably quantify gait-related metrics from PD patients in free-living walking regardless of the smartphone’s location on the body.
Collapse
Affiliation(s)
| | - Mariana Leitão
- CNS—Campus Neurológico Sénior, 2560-280 Torres Vedras, Portugal; (M.L.); (R.B.-M.); (F.P.-F.); (J.J.F.)
| | - Raquel Bouça-Machado
- CNS—Campus Neurológico Sénior, 2560-280 Torres Vedras, Portugal; (M.L.); (R.B.-M.); (F.P.-F.); (J.J.F.)
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal
| | - Filipa Pona-Ferreira
- CNS—Campus Neurológico Sénior, 2560-280 Torres Vedras, Portugal; (M.L.); (R.B.-M.); (F.P.-F.); (J.J.F.)
| | - Sara Alberto
- Kinetikos, 3030-199 Coimbra, Portugal; (D.V.-V.); (S.A.)
| | - Joaquim J. Ferreira
- CNS—Campus Neurológico Sénior, 2560-280 Torres Vedras, Portugal; (M.L.); (R.B.-M.); (F.P.-F.); (J.J.F.)
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ricardo Matias
- Kinetikos, 3030-199 Coimbra, Portugal; (D.V.-V.); (S.A.)
- Physics Department & Institute of Biophysics and Biomedical Engineering (IBEB), Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
5
|
A Multi-Modal Analysis of the Freezing of Gait Phenomenon in Parkinson’s Disease. SENSORS 2022; 22:s22072613. [PMID: 35408226 PMCID: PMC9002774 DOI: 10.3390/s22072613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023]
Abstract
Background: Freezing of Gait (FOG) is one of the most disabling motor complications of Parkinson’s disease, and consists of an episodic inability to move forward, despite the intention to walk. FOG increases the risk of falls and reduces the quality of life of patients and their caregivers. The phenomenon is difficult to appreciate during outpatients visits; hence, its automatic recognition is of great clinical importance. Many types of sensors and different locations on the body have been proposed. However, the advantages of a multi-sensor configuration with respect to a single-sensor one are not clear, whereas this latter would be advisable for use in a non-supervised environment. Methods: In this study, we used a multi-modal dataset and machine learning algorithms to perform different classifications between FOG and non-FOG periods. Moreover, we explored the relevance of features in the time and frequency domains extracted from inertial sensors, electroencephalogram and skin conductance. We developed both a subject-independent and a subject-dependent algorithm, considering different sensor subsets. Results: The subject-independent and subject-dependent algorithms yielded accuracies of 85% and 88% in the leave-one-subject-out and leave-one-task-out test, respectively. Results suggest that the inertial sensors positioned on the lower limb are generally the most significant in recognizing FOG. Moreover, the performance impairment experienced when using a single tibial accelerometer instead of the optimal multi-modal configuration is limited to 2–3%. Conclusions: The achieved results disclose the possibility of getting a good FOG recognition using a minimally invasive set-up made of a single inertial sensor. This is very significant in the perspective of implementing a long-term monitoring of patients in their homes, during activities of daily living.
Collapse
|
6
|
Kim YW, Joa KL, Jeong HY, Lee S. Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model. SENSORS 2021; 21:s21227628. [PMID: 34833704 PMCID: PMC8621118 DOI: 10.3390/s21227628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
In this study, a wearable inertial measurement unit system was introduced to assess patients via the Berg balance scale (BBS), a clinical test for balance assessment. For this purpose, an automatic scoring algorithm was developed. The principal aim of this study is to improve the performance of the machine-learning-based method by introducing a deep-learning algorithm. A one-dimensional (1D) convolutional neural network (CNN) and a gated recurrent unit (GRU) that shows good performance in multivariate time-series data were used as model components to find the optimal ensemble model. Various structures were tested, and a stacking ensemble model with a simple meta-learner after two 1D-CNN heads and one GRU head showed the best performance. Additionally, model performance was enhanced by improving the dataset via preprocessing. The data were down sampled, an appropriate sampling rate was found, and the training and evaluation times of the model were improved. Using an augmentation process, the data imbalance problem was solved, and model accuracy was improved. The maximum accuracy of 14 BBS tasks using the model was 98.4%, which is superior to the results of previous studies.
Collapse
Affiliation(s)
- Yeon-Wook Kim
- Department of Smart Engineering Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea;
| | - Kyung-Lim Joa
- Department of Physical and Rehabilitation Medicine, Inha University Hospital, Incheon 22332, Korea; (K.-L.J.); (H.-Y.J.)
| | - Han-Young Jeong
- Department of Physical and Rehabilitation Medicine, Inha University Hospital, Incheon 22332, Korea; (K.-L.J.); (H.-Y.J.)
| | - Sangmin Lee
- Department of Smart Engineering Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea;
- Department of Electronic Engineering, Inha University, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-7420
| |
Collapse
|
7
|
Abstract
At present, diverse, innovative technology is used in electronics and ubiquitous computing environments [...]
Collapse
|
8
|
An Overview of Wearable Piezoresistive and Inertial Sensors for Respiration Rate Monitoring. ELECTRONICS 2021. [DOI: 10.3390/electronics10172178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for wearable devices to measure respiratory activity is constantly growing, finding applications in a wide range of scenarios (e.g., clinical environments and workplaces, outdoors for monitoring sports activities, etc.). Particularly, the respiration rate (RR) is a vital parameter since it indicates serious illness (e.g., pneumonia, emphysema, pulmonary embolism, etc.). Therefore, several solutions have been presented in the scientific literature and on the market to make RR monitoring simple, accurate, reliable and noninvasive. Among the different transduction methods, the piezoresistive and inertial ones satisfactorily meet the requirements for smart wearable devices since unobtrusive, lightweight and easy to integrate. Hence, this review paper focuses on innovative wearable devices, detection strategies and algorithms that exploit piezoresistive or inertial sensors to monitor the breathing parameters. At first, this paper presents a comprehensive overview of innovative piezoresistive wearable devices for measuring user’s respiratory variables. Later, a survey of novel piezoresistive textiles to develop wearable devices for detecting breathing movements is reported. Afterwards, the state-of-art about wearable devices to monitor the respiratory parameters, based on inertial sensors (i.e., accelerometers and gyroscopes), is presented for detecting dysfunctions or pathologies in a non-invasive and accurate way. In this field, several processing tools are employed to extract the respiratory parameters from inertial data; therefore, an overview of algorithms and methods to determine the respiratory rate from acceleration data is provided. Finally, comparative analysis for all the covered topics are reported, providing useful insights to develop the next generation of wearable sensors for monitoring respiratory parameters.
Collapse
|
9
|
Abstract
The wide-spread use of wearables and the adoption of the Internet of Things (IoT) paradigm provide an opportunity to use mobile-device sensors for medical applications. Sensors available in the commonly used devices may inspire innovative solutions for physiotherapy striving for accurate and early identification of various pathologies. An essential and reliable performance measure is the ten-meter walk test, which is employed to determine functional mobility, gait, and vestibular function. Sensor-based approaches can identify the various test phases and their segmented duration, among other parameters. The measurement parameter primarily used is related to the tests’ duration, and after identifying patterns, a variety of physical treatments can be recommended. This paper reviews multiple studies focusing on automated measurements of the ten-meter walk test with different sensors. Most of the analyzed studies measure similar parameters as traditional methods, such as velocity, duration, and other involuntary and dangerous patients’ movements after stroke. That provides an opportunity to measure different parameters that can be later fed into machine learning models for analyzing more complex patterns.
Collapse
|