1
|
Balasundaram G, Gahlot P, Hafyan RH, Tyagi VK, Gadkari S, Sahu A, Barber B, Mutiyar PK, Kazmi AA, Kleiven H. Anaerobic digestion of thermal hydrolysis pretreated sludge: Process performance, metagenomic analysis, techno-economic and life cycle assessment. BIORESOURCE TECHNOLOGY 2025; 428:132470. [PMID: 40174653 DOI: 10.1016/j.biortech.2025.132470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
This study assessed the potential of thermal hydrolysis process (THP) combined with anaerobic digestion (AD) for high solids sewage sludge treatment across various hydraulic retention times (HRTs). Optimal performance was achieved at a 10-day HRT (6 kg VS/m3·day), yielding 408 L CH4/kg VS added and 54 % volatile solids (VS) removal under THP conditions of 160 °C, 30 min, and 6 bar pressure. Microbial analysis revealed predominant acetoclastic and hydrogenotrophic methanogens. Four scenarios were designed and analyzed for environmental and economic performance: Scenario 1 (conventional AD-CHP), Scenario 2 (conventional AD-BioCNG), Scenario 3 (THP AD-BioCNG), and Scenario 4 (THP AD-CHP). The results showed that scenarios with CHP integration achieved better environmental performance by generating sufficient energy to meet demand, with energy consumption as a key factor. Notably, scenario 4 had the lowest global warming potential (GWP) at -0.0185 kg CO2-eq, outperforming conventional AD (Scenario 1) with CHP, which had a GWP of -0.00232 kg CO2-eq. However, profitability analysis showed that Scenario 3 was the most economically viable, with a net present value (NPV) of $4.3 million, an internal rate of return (IRR) of 10.21 %, and a 17-year payback period. Although it had higher capital ($58 million) and operational costs ($12.5 million/year) than Scenario 4 ($45 million and $8.6 million/year), its greater biomethane yield resulted in higher revenue ($20.7 million/year), making it the most profitable option. While Scenario 4 offered the best environmental benefits, Scenario 3 emerged as the most financially sustainable choice. These findings highlight the environmental and economic advantage of utilizing THP-AD process over conventional AD, suggesting that THP-AD optimizes methane production, solids reduction, and environmental impact, making the Bio CNG pathway a sustainable and economically viable option.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | - Pallavi Gahlot
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | - Rendra Hakim Hafyan
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India.
| | - Siddharth Gadkari
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Ashish Sahu
- Cambi AS, Skysstasjon 11A, 1383 Asker, Norway
| | - Bill Barber
- Cambi AS, Skysstasjon 11A, 1383 Asker, Norway
| | - Pravin K Mutiyar
- National Mission for Clean Ganga, Department of Water Resources, Ministry of Jal Shakti, Govt. of India, New Delhi, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667, India
| | | |
Collapse
|
2
|
Optimization of Biogas Production from Sewage Sludge: Impact of Combination with Bovine Dung and Leachate from Municipal Organic Waste. SUSTAINABILITY 2022. [DOI: 10.3390/su14084380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biogas is a bioenergy produced from organic or all types of biological degradable wastes and could make it possible to limit energy dependence. Sludge is the best alternative substrate for biogas production at a community-level biogas plant. The literature shows that co-digestion can increase the efficiency of sludge anaerobic digestion. This research, thus, focused on (i) determining the conditions of optimal biogas production in the co-digestion of primary sludge (PS) and bovine dung (BD), (ii) evaluating the impact of leachate from organic waste and cellulose on biogas production. Primary sludge was collected in Bacau town wastewater treatment plant in Romania. The sampling of municipal solid waste was carried out in Ouagadougou pre-collect centers (Burkina Faso). Batch tests were conducted in glass bottles through anaerobic digestion (1 L). The following parameters were monitored during the digestion process: pH, volatile fatty acid (VFA), volatile solids (VS) and biogas production. Primary sludge, bovine dung and leachate showed 50.51%, 72.41% and 70.48% of volatile solids content, respectively. Sludge showed good stability, unlike the other two substrates, such as bovine dung and leachate, with VFA to alkalinity ratio 0.54. Leachate from organic waste had high values of VFA to alkalinity ratio > 3600. Co-digestion could make it possible to raise the levels of organic matter and improve microbial growth and the stability of anaerobic biomass. The best biogas production yield of 152.43 mL/g VS was obtained with a combination of 30% bovine dung and 70% primary sludge at 45 °C, with a 21.57% reduction in organic matter. An improvement in biogas productivity was effective with the addition of leachate, which could be used as an additive element during anaerobic digestion.
Collapse
|
3
|
Feasibility of Coupling Anaerobic Digestion and Hydrothermal Carbonization: Analyzing Thermal Demand. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anaerobic digestion is a biological process with wide application for the treatment of high organic-containing streams. The production of biogas and the lack of oxygen requirements are the main energetic advantages of this process. However, the digested stream may not readily find a final disposal outlet under certain circumstances. The present manuscript analyzed the feasibility of valorizing digestate by the hydrothermal carbonization (HTC) process. A hypothetical plant treating cattle manure and cheese whey as co-substrate (25% v/w, wet weight) was studied. The global performance was evaluated using available data reported in the literature. The best configuration was digestion as a first stage with the subsequent treatment of digestate in an HTC unit. The treatment of manure as sole substrate reported a value of 752 m3/d of biogas which could be increased to 1076 m3/d (43% increase) when coupling an HTC unit for digestate post-treatment and the introduction of the co-substrate. However, the high energy demand of the combined configurations indicated, as the best alternative, the valorization of just a fraction (15%) of digestate to provide the benefits of enhancing biogas production. This configuration presented a much better energy performance than the thermal hydrolysis pre-treatment of manure. The increase in biogas production does not compensate for the high energy demand of the pre-treatment unit. However, several technical factors still need further research to make this alternative a reality, as it is the handling and pumping of high solid slurries that significantly affects the energy demand of the thermal treatment units and the possible toxicity of hydrochar when used in a biological process.
Collapse
|
4
|
Characteristics of Biogas Production from Organic Wastes Mixed at Optimal Ratios in an Anaerobic Co-Digestion Reactor. ENERGIES 2021. [DOI: 10.3390/en14206812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study determined the optimal mixing ratio of food waste and livestock manure for efficient co-digestion of sewage sludge by applying the biochemical methane potential (BMP) test, Design Expert software, and continuous reactor operation. The BMP test of sewage sludge revealed a maximum methane yield of 334 mL CH4/g volatile solids (VS) at an organic loading rate (OLR) of 4 kg VS/(m3·d). For food waste, the maximum methane yield was 573 mL CH4/g VS at an OLR of 6 kg VS/(m3·d). Livestock manure showed the lowest methane yield. The BMP tests with various mixing ratios confirmed that a higher mixing ratio of food waste resulted in a higher methane yield, which showed improved biodegradability and an improved VS removal rate. The optimal mixing ratio of 2:1:1 for sewage sludge, food waste, and livestock manure was determined using Design Expert 10. Using continuous co-digestion reactor operation under an optimal mixing ratio, greater organic matter removal and methane yield was possible. The process stability of co-digestion of optimally mixed substrate was improved compared with that of operations with each substrate alone. Therefore, co-digestion could properly maintain the balance of each stage of anaerobic digestion reactions by complementing the characteristics of each substrate under a higher OLR.
Collapse
|
5
|
Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An evaluation of the energy and economic performance of thermal hydrolysis technologies is carried out on a theoretical basis. The wastewater treatment plant (WWTP) of Burgos (Spain) was the base scenario of this evaluation. Energy and mass balances were established considering the registered data of primary and secondary thickened sludge in the WWTP for 2011 to 2016. These balances were analysed considering five different scenarios, taking as Scenario 1, the plant operating with conventional mesophilic digestion. The scenarios considered commercially available technologies. The best results were obtained when hydrolysis was applied to digested sludge and sludge from the Solidstream® process. These two scenarios showed the best performance regarding volatile solid removal and lower demand for live steam, achieving a higher amount of biogas available for valorisation using combined heat and power (CHP) units. The main advantage of the hydrolysis process is the decrease in the volume of digesters and the amount of dewatered sludge needing final disposal. The Solidstream® process allowed a 35% increase in biogas available for engines and a 23% increase in electricity production.
Collapse
|