1
|
Chibane N, Revilla P, Yannam VRR, Marcet P, Covelo EF, Ordás B. Impact of irrigation, nitrogen fertilization, and plant density on stay-green and its effects on agronomic traits in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1399072. [PMID: 39309183 PMCID: PMC11414411 DOI: 10.3389/fpls.2024.1399072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Introduction The stay-green (SG) or delayed leaf senescence enables crop plants to maintain their green leaves and photosynthetic capacity for a longer time after flowering. It is considered an important trait in maize breeding, which has contributed to gain in grain yield of modern varieties. It has been also used to improve the tolerance to drought and deficiencies in nitrogen fertilization (NF). However, the objective of this study is to evaluate the influence of water irrigation (WI), NF, and plant density (PD) on SG and the effect of SG on agronomic traits in maize. Methods Four SG lines and four non-stay-green (NSG) lines were evaluated in four contrasting environments under two WI, three NF, and two PD levels. Results and discussion As expected, the chlorophyll content of leaves at 45 days after flowering (Chlo45) was, on average, higher in the SG group of lines. The difference in Chlo45 between the SG and NSG genotypes was consistent across WI, NF, and PD and the environments. This is indicative that internal or developmental factors were more important than external signals in controlling the senescence. The effect of SG increasing thousand-kernel weight, stover yield at harvest, or moisture was not influenced by WI, NF, or PD but was altered by the background environment. Our results have implications for the application of SG as a secondary trait for enhancing abiotic stress tolerance. Future studies could consider a wider range of environmental conditions to assess the performance of SG traits under different climatic and soil conditions.
Collapse
Affiliation(s)
- Nadia Chibane
- Maize Genetics and Breeding Group, Misión Biológica de Galicia [The Spanish National Research Council (CSIC)], Pontevedra, Spain
| | - Pedro Revilla
- Maize Genetics and Breeding Group, Misión Biológica de Galicia [The Spanish National Research Council (CSIC)], Pontevedra, Spain
| | - Venkata Rami Reddy Yannam
- Sustainable Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Purificación Marcet
- Area de Edafología y Química Agricola, Facultad de Ciencias, Universidad de Vigo, Vigo, Spain
| | - Emma Fernández Covelo
- Area de Edafología y Química Agricola, Facultad de Ciencias, Universidad de Vigo, Vigo, Spain
| | - Bernardo Ordás
- Crop Adaptation and Sustainability Group, Misión Biológica de Galicia [The Spanish National Research Council (CSIC)], Pontevedra, Spain
| |
Collapse
|
2
|
Yu R, Cao X, Liu J, Nie R, Zhang C, Yuan M, Huang Y, Liu X, Zheng W, Wang C, Wu T, Su B, Kang Z, Zeng Q, Han D, Wu J. Using UAV-Based Temporal Spectral Indices to Dissect Changes in the Stay-Green Trait in Wheat. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0171. [PMID: 38694449 PMCID: PMC11062509 DOI: 10.34133/plantphenomics.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/17/2024] [Indexed: 05/04/2024]
Abstract
Stay-green (SG) in wheat is a beneficial trait that increases yield and stress tolerance. However, conventional phenotyping techniques limited the understanding of its genetic basis. Spectral indices (SIs) as non-destructive tools to evaluate crop temporal senescence provide an alternative strategy. Here, we applied SIs to monitor the senescence dynamics of 565 diverse wheat accessions from anthesis to maturation stages over 2 field seasons. Four SIs (normalized difference vegetation index, green normalized difference vegetation index, normalized difference red edge index, and optimized soil-adjusted vegetation index) were normalized to develop relative stay-green scores (RSGS) as the SG indicators. An RSGS-based genome-wide association study identified 47 high-confidence quantitative trait loci (QTL) harboring 3,079 single-nucleotide polymorphisms associated with SG and 1,085 corresponding candidate genes. Among them, 15 QTL overlapped or were adjacent to known SG-related QTL/genes, while the remaining QTL were novel. Notably, a set of favorable haplotypes of SG-related candidate genes such as TraesCS2A03G1081100, TracesCS6B03G0356400, and TracesCS2B03G1299500 are increasing following the Green Revolution, further validating the feasibility of the pipeline. This study provided a valuable reference for further quantitative SG and genetic research in diverse wheat panels.
Collapse
Affiliation(s)
- Rui Yu
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Cao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Liu
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiqi Nie
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuanliang Zhang
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Yuan
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchuan Huang
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinzhe Liu
- College of Mechanical and Electronic Engineering,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Zheng
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changfa Wang
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Wu
- College of Mechanical and Electronic Engineering,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baofeng Su
- College of Mechanical and Electronic Engineering,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dejun Han
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianhui Wu
- College of Agronomy,
Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production,
Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Karnatam KS, Mythri B, Un Nisa W, Sharma H, Meena TK, Rana P, Vikal Y, Gowda M, Dhillon BS, Sandhu S. Silage maize as a potent candidate for sustainable animal husbandry development-perspectives and strategies for genetic enhancement. Front Genet 2023; 14:1150132. [PMID: 37303948 PMCID: PMC10250641 DOI: 10.3389/fgene.2023.1150132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Maize is recognized as the queen of cereals, with an ability to adapt to diverse agroecologies (from 58oN to 55oS latitude) and the highest genetic yield potential among cereals. Under contemporary conditions of global climate change, C4 maize crops offer resilience and sustainability to ensure food, nutritional security, and farmer livelihood. In the northwestern plains of India, maize is an important alternative to paddy for crop diversification in the wake of depleting water resources, reduced farm diversity, nutrient mining, and environmental pollution due to paddy straw burning. Owing to its quick growth, high biomass, good palatability, and absence of anti-nutritional components, maize is also one of the most nutritious non-legume green fodders. It is a high-energy, low-protein forage commonly used for dairy animals like cows and buffalos, often in combination with a complementary high-protein forage such as alfalfa. Maize is also preferred for silage over other fodders due to its softness, high starch content, and sufficient soluble sugars required for proper ensiling. With a rapid population increase in developing countries like China and India, there is an upsurge in meat consumption and, hence, the requirement for animal feed, which entails high usage of maize. The global maize silage market is projected to grow at a compound annual growth rate of 7.84% from 2021 to 2030. Factors such as increasing demand for sustainable and environment-friendly food sources coupled with rising health awareness are fueling this growth. With the dairy sector growing at about 4%-5% and the increasing shortage faced for fodder, demand for silage maize is expected to increase worldwide. The progress in improved mechanization for the provision of silage maize, reduced labor demand, lack of moisture-related marketing issues as associated with grain maize, early vacancy of farms for next crops, and easy and economical form of feed to sustain household dairy sector make maize silage a profitable venture. However, sustaining the profitability of this enterprise requires the development of hybrids specific for silage production. Little attention has yet been paid to breeding for a plant ideotype for silage with specific consideration of traits such as dry matter yield, nutrient yield, energy in organic matter, genetic architecture of cell wall components determining their digestibility, stalk standability, maturity span, and losses during ensiling. This review explores the available information on the underlying genetic mechanisms and gene/gene families impacting silage yield and quality. The trade-offs between yield and nutritive value in relation to crop duration are also discussed. Based on available genetic information on inheritance and molecular aspects, breeding strategies are proposed to develop maize ideotypes for silage for the development of sustainable animal husbandry.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Bikkasani Mythri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Wajhat Un Nisa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Heena Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Tarun Kumar Meena
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prabhat Rana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Baldev Singh Dhillon
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Wang P, Fu D. How not to die: restraining leaf senescence by MYB59-salicylic acid/jasmonic acid negative feedback loops. PLANT PHYSIOLOGY 2023; 192:12-14. [PMID: 36797807 PMCID: PMC10152648 DOI: 10.1093/plphys/kiad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Peng Wang
- School of Biological Sciences, The University of Hong Kong, 999077 Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, 999077 Hong Kong, China
| | - Dali Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, 712100 Shaanxi, China
| |
Collapse
|
5
|
Luo J, Abid M, Zhang Y, Cai X, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of Kiwifruit SGR Family Members and Functional Characterization of SGR2 Protein for Chlorophyll Degradation. Int J Mol Sci 2023; 24:ijms24031993. [PMID: 36768313 PMCID: PMC9917040 DOI: 10.3390/ijms24031993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The STAY-GREEN (SGR) proteins play an important role in chlorophyll (Chl) degradation and are closely related to plant photosynthesis. However, the availability of inadequate studies on SGR motivated us to conduct a comprehensive study on the identification and functional dissection of SGR superfamily members in kiwifruit. Here, we identified five SGR genes for each of the kiwifruit species [Actinidia chinensis (Ac) and Actinidia eriantha (Ae)]. The phylogenetic analysis showed that the kiwifruit SGR superfamily members were divided into two subfamilies the SGR subfamily and the SGRL subfamily. The results of transcriptome data and RT-qPCR showed that the expression of the kiwifruit SGRs was closely related to light and plant developmental stages (regulated by plant growth regulators), which were further supported by the presence of light and the plant hormone-responsive cis-regulatory element in the promoter region. The subcellular localization analysis of the AcSGR2 protein confirmed its localization in the chloroplast. The Fv/Fm, SPAD value, and Chl contents were decreased in overexpressed AcSGR2, but varied in different cultivars of A. chinensis. The sequence analysis showed significant differences within AcSGR2 proteins. Our findings provide valuable insights into the characteristics and evolutionary patterns of SGR genes in kiwifruit, and shall assist kiwifruit breeders to enhance cultivar development.
Collapse
Affiliation(s)
- Juan Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xinxia Cai
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jing Tu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
6
|
Yannam VRR, Caicedo M, Malvar RA, Ordás B. Genome-Wide Association Analysis of Senescence-Related Traits in Maize. Int J Mol Sci 2022; 23:ijms232415897. [PMID: 36555534 PMCID: PMC9782587 DOI: 10.3390/ijms232415897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Senescence is a programmed process that involves the destruction of the photosynthesis apparatus and the relocation of nutrients to the grain. Identifying senescence-associated genes is essential to adapting varieties for the duration of the cultivation cycle. A genome-wide association study (GWAS) was performed using 400 inbred maize lines with 156,164 SNPs to study the genetic architecture of senescence-related traits and their relationship with agronomic traits. We estimated the timing of senescence to be 45 days after anthesis in the whole plant and specifically in the husks. A list of genes identified in a previous RNAseq experiment as involved in senescence (core senescence genes) was used to propose candidate genes in the vicinity of the significant SNPs. Forty-six QTLs of moderate to high effect were found for senescence traits, including specific QTLs for husk senescence. The allele that delayed senescence primarily increased grain yield and moisture. Seven and one significant SNPs were found in the coding and promoter regions of eight core senescence genes, respectively. These genes could be potential candidates for generating a new variation by genome editing for functional analysis and breeding purposes, particularly Zm00001d014796, which could be responsible for a QTL of senescence found in multiple studies.
Collapse
Affiliation(s)
- Venkata Rami Reddy Yannam
- Mision Biológica de Galicia, Spanish National Research Council (CSIC), 36001 Pontevedra, Spain
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| | - Marlon Caicedo
- Estación Experimental Tropical Pichilingue, Programa de Maíz, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito 170518, Ecuador
| | - Rosa Ana Malvar
- Mision Biológica de Galicia, Spanish National Research Council (CSIC), 36001 Pontevedra, Spain
| | - Bernardo Ordás
- Mision Biológica de Galicia, Spanish National Research Council (CSIC), 36001 Pontevedra, Spain
- Correspondence:
| |
Collapse
|
7
|
Caicedo M, Munaiz ED, Malvar RA, Jiménez JC, Ordas B. Precision Mapping of a Maize MAGIC Population Identified a Candidate Gene for the Senescence-Associated Physiological Traits. Front Genet 2021; 12:716821. [PMID: 34671382 PMCID: PMC8521056 DOI: 10.3389/fgene.2021.716821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Senescence is an important trait in maize (Zea mais L.), a key crop that provides nutrition values and a renewable source of bioenergy worldwide. Genome-wide association studies (GWAS) can be used to identify causative genetic variants that influence the major physiological measures of senescence, which is used by plants as a defense mechanism against abiotic and biotic stresses affecting its performance. We measured four physiological and two agronomic traits that affect senescence. Six hundred seventy-two recombinant inbred lines (RILs) were evaluated in two consecutive years. Thirty-six candidate genes were identified by genome-wide association study (GWAS), and 11 of them were supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport, and sink activity. We identified a candidate gene, Zm00001d043586, significantly associated with chlorophyll, and independently studied its transcription expression in an independent panel. Our results showed that Zm00001d043586 affects chlorophyl rate degradation, a key determinant of senescence, at late plant development stages. These results contribute to better understand the genetic relationship of the important trait senescence with physiology related parameters in maize and provide new putative molecular markers that can be used in marker assisted selection for line development.
Collapse
Affiliation(s)
- Marlon Caicedo
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Eduardo D Munaiz
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| | - Rosa A Malvar
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| | - José C Jiménez
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Cuauhtémoc, Mexico
| | - Bernardo Ordas
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| |
Collapse
|
8
|
Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems. SUSTAINABILITY 2021. [DOI: 10.3390/su131910917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Failure to adjust the fertilization system to quantitative needs, and especially to the dynamics of mineral demand, causes plant metabolism disorders, low mineral utilization by the plant, and an increased risk of environmental pollution. Additionally, unbalanced mineral fertilization may reduce the assimilation surface actively involved in photosynthesis, which determines the yield potential of individual varieties. The aim of the strict field experiment was to determine the responses of two types of maize varieties (Zea mays L.) to treatments with different nutrient management systems, as expressed by the growth analysis of active organs during photosynthesis, SPAD (soil and plant analysis development) leaf greenness index, green mass yield, and unit nitrogen productivity from PFPFN mineral fertilization (partial factor productivity fertilizer nitrogen). It was demonstrated that the total area of leaf blades of a single plant and the LAI (leaf area index) value were significantly higher in the “stay-green” hybrid compared to the traditional variety. The analysis of leaf morphological structure of the “stay-green” hybrid, based on SLA (specific leaf area), indicated a highly effective utilization of nitrogen, leading to faster leaf production with a larger assimilation area, which formed the basis for effective absorption of solar radiation. The selection of “stay-green” varieties for silage cultivation guarantees high green mass yields. The risk of lower maize biomass intended for ensilage can only be reduced by applying balanced mineral fertilization of all nutrients. The omission of phosphorus (P) and potassium (K) in the mineral fertilization dose, regardless of the variety tested, was a factor reducing the yield of maize biomass intended for ensilage and a lower partial factor productivity of nitrogen fertilizer compared to the treatment optimally balanced with respect to the nitrogen dose.
Collapse
|