1
|
Wu ZL, Shi WJ, Zhang L, Xia ZY, Gou M, Sun ZY, Tang YQ. Investigating the robustness of microbial communities in municipal sludge anaerobic digestion under organic loading rate disturbance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123326. [PMID: 39550949 DOI: 10.1016/j.jenvman.2024.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/24/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Anaerobic digestion (AD) frequently encounters disturbances due to variations in organic loading rates (OLRs), which can result in the failure of the sludge treatment process. However, there is a lack of comprehensive studies on the robustness of AD systems against OLR disturbances and the underlying mechanisms. In this study, the responses of reactor performance and active microbial communities in mesophilic AD were investigated and compared under conditions of OLR shock and OLR fluctuation. Statistical analysis confirmed that all reactors recovered from both types of OLR disturbance, indicating both functional and structural robustness of the mesophilic community. Based on metagenomics and metatranscriptomics analyses, it was observed that high diversity within the microbial community led to functional redundancy, which appears to be a key mechanism contributing to the robustness against OLR disturbances. Additionally, for the first time, the potential metabolic diversity of aerobic autotrophy bacteria in AD reactors was identified, including their roles in the utilization of glucose and acetate. Furthermore, the analysis of topological properties within the microbial interaction network was conducted, and the robustness of the community network was verified through the application of random node deletion attacks. The findings from this study provide valuable information for the effective regulation of microbial communities and the design of practical AD systems.
Collapse
Affiliation(s)
- Zong-Lin Wu
- College of Architecture and Environment, Sichuan University, No.24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| | - Wen-Jing Shi
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co, Ltd, No.96, Nankai Street, Lvshunkou, Dalian, Liaoning, 116045, China
| | - Lin Zhang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co, Ltd, No.96, Nankai Street, Lvshunkou, Dalian, Liaoning, 116045, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No.24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No.24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China.
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No.24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No.24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
2
|
Wu ZL, Zhang Q, Xia ZY, Gou M, Sun ZY, Tang YQ. The responses of mesophilic and thermophilic anaerobic digestion of municipal sludge to periodic fluctuation disturbance of organic loading rate. ENVIRONMENTAL RESEARCH 2023; 218:114783. [PMID: 36372150 DOI: 10.1016/j.envres.2022.114783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Fluctuation disturbance of organic loading rate (OLR) is common in actual anaerobic digestion (AD), but its effects on AD of municipal sludge gets little attention. This study investigated the responses of reactor performance and active microbial community in mesophilic and thermophilic AD of municipal sludge before, during and after OLR periodic fluctuation disturbance. The performance of both reactors were similar before and after disturbance although some parameter values changed during the disturbance, which indicated their enough buffer capacity to OLR periodic fluctuation. Different microbial community at RNA level was observed in the two reactors. When the OLR disturbance commenced, the microbial community changed greatly in thermophilic AD. Error and attack tolerance of the microbial network was analyzed in order to learn the response mechanisms to OLR disturbance. The results assisted that the thermophilic microbial community was more vulnerable, but the reactor performance of which could be maintained using the functional redundancy strategy under OLR fluctuation disturbance.
Collapse
Affiliation(s)
- Zong-Lin Wu
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| | - Quan Zhang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd. No.96, Nankai Street, Lvshunkou, Dalian, Liaoning, 115045, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China.
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
3
|
Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes (Basel) 2022. [DOI: 10.3390/pr10061202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The United Kingdom (UK) has a decarbonisation strategy that includes energy from both hydrogen and biomethane. The latter comes from the growing anaerobic digestion (AD) market, which in 2020 produced 23.3 TWh of energy in the form of biogas. According to the strategy, this must be upgraded to biomethane by removal of carbon dioxide (CO2): a goal that could also be fulfilled through CO2 biomethanisation, alleviating the need for carbon capture and storage. Results are presented from a survey of publicly available datasets coupled with modelling to identify potential scale and knowledge gaps. Literature data were used to estimate maximum biomethane concentrations by feedstock type: these ranged from 79% for food wastes to 93% for livestock manures. Data from various government sources were used to estimate the overall potential for CO2 biomethanisation with current AD infrastructure. Values for the uplift in biomethane production ranged from 57% to 61%, but the need for more consistent data collection methodologies was highlighted. On average, however, if CO2 biomethanisation was applied in all currently operating UK AD plants an energy production uplift of 12,954 GWh could be achieved based on 2020 figures. This is sufficient to justify the inclusion of CO2 biomethanisation in decarbonisation strategies, in the UK and worldwide.
Collapse
|
4
|
Anaerobic co-digestion of sewage sludge and bio-based glycerol: Optimisation of process variables using one-factor-at-a-time (OFAT) and Box-Behnken Design (BBD) techniques. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Monitoring of Food Waste Anaerobic Digestion Performance: Conventional Co-Substrates vs. Unmarketable Biochar Additions. Foods 2021; 10:foods10102353. [PMID: 34681402 PMCID: PMC8535009 DOI: 10.3390/foods10102353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study proposed the selection of cost-effective additives generated from different activity sectors to enhance and stabilize the start-up, as well as the transitional phases, of semi-continuous food waste (FW) anaerobic digestion. The results showed that combining agricultural waste mixtures including wheat straw (WS) and cattle manure (CM) boosted the process performance and generated up to 95% higher methane yield compared to the control reactors (mono-digested FW) under an organic loading rate (OLR) range of 2 to 3 kg VS/m3·d. Whereas R3 amended with unmarketable biochar (UBc), to around 10% of the initial fresh mass inserted, showed a significant process enhancement during the transitional phase, and more particularly at an OLR of 4 kg VS/m3·d, it was revealed that under these experimental conditions, FW reactors including UBc showed an increase of 144% in terms of specific biogas yield (SBY) compared to FW reactors fed with agricultural residue. Hence, both agricultural and industrial waste were efficacious when it came to boosting either FW anaerobic performance or AD effluent quality. Although each co-substrate performed under specific experimental conditions, this feature provides decision makers with diverse alternatives to implement a sustainable organic waste management system, conveying sufficient technical details to draw up appropriate designs for the recovery of various types of organic residue.
Collapse
|
6
|
Theaker H, Jensen H, Walker M, Pourkashanian M. Effect of a variable organic loading rate on process kinetics and volatile solids destruction in synthetic food waste-fed anaerobic digesters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:149-158. [PMID: 34419702 DOI: 10.1016/j.wasman.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
With the increasing installation of weather-dependent renewable sources such as solar and wind power, the ability to produce electricity on demand to balance any shortfall in supply is becoming more important. Anaerobic digestion is a low-carbon energy source with the potential to be flexible to meet this need. An investigation was conducted into the response of two laboratory-scale anaerobic digesters at loading rate of 2.5 gVS L-1 day-1 over five months using a synthetic food waste as a substrate. One digester was consistently fed at the same rate, whereas the other digester was fed with periods of varying organic loading rate, from 0.1 to 7 gVS L-1 day-1, using a feed pattern derived from a record of restaurant food waste. The digester that had been fed at a variable rate showed a pronounced increase in biogas production after feed events and a 9.6% higher VS breakdown than the steady-feed digester (81% compared to 74%), with no effect on digester stability, volatile fatty acid concentration, overall biogas output or biogas quality. These findings support and encourage the use of variable-rate feeding to balance the electricity demand.
Collapse
Affiliation(s)
- Helen Theaker
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Henriette Jensen
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Mark Walker
- Department of Engineering, University of Hull, Hull HU6 7RX, UK.
| | - Mohamed Pourkashanian
- Department of Mechanical Engineering, The University of Sheffield, The Ella Armitage Building, 40 Leavygreave Road, Sheffield S3 7RD, UK.
| |
Collapse
|
7
|
Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of the study was to determine the effect of heating with microwave electromagnetic radiation (EMR) on the efficiency of the methane fermentation (MF) of expired food products (EFP). The research was inspired by the positive effect of EMR on the production of biogas and methane from different organic substrates. The experiment was carried out on a laboratory scale in fully mixed, semi-continuous anaerobic reactors. The technological conditions were as follows: temperature, 35 ± 1 °C; organic load rate (OLR), 2.0 kgVS·m−3∙d−1; and hydraulic retention time (HRT), 40 days. The source of the EMR was a magnetron (electric power, 300 W). There was no statistically significant influence of the use of EMR on the achieved technological effects of MF. The efficiency of biogas production was 710 ± 35 dm3·kgVS−1 in the variant with EMR and 679 ± 26 dm3·kgVS−1 in the variant with convection heating (CH). The methane contents were 63.5 ± 2.4% (EMR) and 62.4 ± 4.0% (CH), and the cumulative methane production after 40 days was 271.2 and 288.6 dm3CH4, respectively.
Collapse
|
8
|
Effect of Pasteurisation on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion. Processes (Basel) 2020. [DOI: 10.3390/pr8111351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effect of pasteurisation and co-pasteurisation on biochemical methane potential values in anaerobic digestion (AD) was studied. Pasteurisation prior to digestion in a biogas plant is a common hygienisation method for organic materials which contain or have been in contact with animal by-products. Tests were carried out on food waste, slaughterhouse waste, animal blood, cattle slurry, potato waste, card packaging and the organic fraction of municipal solid waste (OFMSW); pasteurisation at 70 °C for 1 h was applied. Pasteurisation had increased the methane yields of blood (+15%) and potato waste (+12%) only, which both had a low content of structural carbohydrates (hemi-cellulose and cellulose) but a particularly high content of either non-structural carbohydrates such as starch (potato waste) or proteins (blood). With food waste, card packaging and cattle slurry, pasteurisation had no observable impact on the methane yield. Slaughterhouse waste and OFMSW yielded less methane after pasteurisation in the experiments (but statistical significance of the difference between pasteurised and unpasteurised slaughterhouse waste or OFMSW was not confirmed in this work). It is concluded that pasteurisation can positively impact the methane yield of some specific substrates, such as potato waste, where heat-treatment may induce gelatinisation with release of the starch molecules. For most substrates, however, pasteurisation at 70 °C is unlikely to increase the methane yield. It is unlikely to improve biodegradability of lignified materials, and it may reduce the methane yield from substrates which contain high contents of volatile components. Furthermore, in this experimental study, the obtained methane yield was unaffected by whether the substrates were pasteurised individually and then co-digested or co-pasteurised as a mixture before batch digestion.
Collapse
|
9
|
Abstract
The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.
Collapse
|