1
|
Abstract
The operation and maintenance (O&M) of buildings and infrastructure represent a strategic activity to ensure they perform as expected over time and to reduce energy consumption and maintenance costs at the urban and building scale. With the increasing diffusion of BIM, IoT devices, and AI, the future of O&M is represented by digital twin technology. To effectively take advantage of this digital revolution, thus enabling data-driven energy control, proactive maintenance, and predictive daily operations, it is vital that smart building management exploits the opportunities offered by the extended reality (XR) technologies. Nevertheless, in consideration of the novelty of XR in the AECO sector and its rapid and ongoing evolution, knowledge of the specific possibilities and the methods of integration into the building process workflow is still piecemeal and sparse. With the goal to bridge this gap, the article presents a thorough review of virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies and applications for smart building operation and maintenance. After defining VR, AR, and MR, the article provides a detailed review that analyzes, categorizes, and summarizes state-of-the-art XR technologies and their possible applications for building O&M along with their relative advantages and disadvantages. The article concludes that the application of XR in building and city management is showing promising results in enhancing human performance in technical O&M tasks, in understanding and controlling the energy efficiency, comfort, and safety of building and infrastructures, and in supporting strategic decision making for the future smart city.
Collapse
|
2
|
|
3
|
Abstract
The paper presents the opportunities to apply computer graphics in an object floodlighting design process and in an analysis of object illumination. The course of object floodlighting design has been defined based on a virtual three-dimensional geometric model. The problems related to carrying out the analysis of lighting, calculating the average illuminance, luminance levels and determining the illuminated object surface area are also described. These parameters are directly tied with the calculations of the Floodlighting Utilisation Factor, and therefore, with the energy efficiency of the design as well as the aspects of light pollution of the natural environment. The paper shows how high an impact of the geometric model of the object has on the accuracy of photometric calculations. Very often the model contains the components that should not be taken into account in the photometric calculations. The research on what influence the purity of the geometric mesh of the illuminated object has on the obtained results is presented. It shows that the errors can be significant, but it is possible to optimise the 3D object model appropriately in order to receive the precise results. For the example object presented in this paper, removing the planes that do not constitute its external surface has caused a two-fold increase in the average illuminance and average luminance. This is dangerous because a designer who wants to achieve a specific average luminance level in their design without optimizing the model will obtain the luminance values that will actually be much higher.
Collapse
|
4
|
Brightness and Uniformity Perception of Virtual Corridor with Artificial Lighting Systems. ENERGIES 2021. [DOI: 10.3390/en14020412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article compares the brightness and uniformity perception of virtual corridor displayed on computer screens and under different surrounding conditions, between two groups of respondents. The computer simulations of 10 lighting scenarios in the empty corridor, diverse in terms of luminance distribution and lighting power density, were developed. The visual assessment of the lighting effects was carried out on the basis of surveys. The respondents assessed the brightness and uniformity of each plane and entire corridor for each scenario, using semantic differential scaling. Each person from the first group individually made their evaluations on the same computer screen placed in the experimental box. Each person from the second group made the assessments on different computer screens, and all respondents from this group made the evaluations in the computer room at the same time. A high convergence of the results between the groups was found in the assessments of brightness and uniformity perception for consecutive lighting situations. In 93.75% of cases, the same perception in brightness and uniformity between the group means was achieved. A high convergence of the results between the groups in the assessment of brightness and uniformity perception for the same lighting situations was also demonstrated.
Collapse
|