1
|
Abstract
One of the most critical aspects of integrating renewable energy sources into the smart grid is photovoltaic (PV) power generation forecasting. This ensemble forecasting technique combines several forecasting models to increase the forecasting accuracy of the individual models. This study proposes a regression-based ensemble method for day-ahead PV power forecasting. The general framework consists of three steps: model training, creating the optimal set of weights, and testing the model. In step 1, a Random forest (RF) with different parameters is used for a single forecasting method. Five RF models (RF1, RF2, RF3, RF4, and RF5) and a support vector machine (SVM) for classification are established. The hyperparameters for the regression-based method involve learners (linear regression (LR) or support vector regression (SVR)), regularization (least absolute shrinkage and selection operator (LASSO) or Ridge), and a penalty coefficient for regularization (λ). Bayesian optimization is performed to find the optimal value of these three hyperparameters based on the minimum function. The optimal set of weights is obtained in step 2 and each set of weights contains five weight coefficients and a bias. In the final step, the weather forecasting data for the target day is used as input for the five RF models and the average daily weather forecasting data is also used as input for the SVM classification model. The SVM output selects the weather conditions, and the corresponding set of weight coefficients from step 2 is combined with the output from each RF model to obtain the final forecasting results. The stacking recurrent neural network (RNN) is used as a benchmark ensemble method for comparison. Historical PV power data for a PV site in Zhangbin Industrial Area, Taiwan, with a 2000 kWp capacity is used to test the methodology. The results for the single best RF model, the stacking RNN, and the proposed method are compared in terms of the mean relative error (MRE), the mean absolute error (MAE), and the coefficient of determination (R2) to verify the proposed method. The results for the MRE show that the proposed method outperforms the best RF method by 20% and the benchmark method by 2%.
Collapse
|
2
|
Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints. ENERGIES 2022. [DOI: 10.3390/en15093320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solar power has rapidly become an increasingly important energy source in many countries over recent years; however, the intermittent nature of photovoltaic (PV) power generation has a significant impact on existing power systems. To reduce this uncertainty and maintain system security, precise solar power forecasting methods are required. This study summarizes and compares various PV power forecasting approaches, including time-series statistical methods, physical methods, ensemble methods, and machine and deep learning methods, the last of which there is a particular focus. In addition, various optimization algorithms for model parameters are summarized, the crucial factors that influence PV power forecasts are investigated, and input selection for PV power generation forecasting models are discussed. Probabilistic forecasting is expected to play a key role in the PV power forecasting required to meet the challenges faced by modern grid systems, and so this study provides a comparative analysis of existing deterministic and probabilistic forecasting models. Additionally, the importance of data processing techniques that enhance forecasting performance are highlighted. In comparison with the extant literature, this paper addresses more of the issues concerning the application of deep and machine learning to PV power forecasting. Based on the survey results, a complete and comprehensive solar power forecasting process must include data processing and feature extraction capabilities, a powerful deep learning structure for training, and a method to evaluate the uncertainty in its predictions.
Collapse
|
3
|
Key Growth Factors and Limitations of Photovoltaic Companies in Poland and the Phenomenon of Technology Entrepreneurship under Conditions of Information Asymmetry. ENERGIES 2021. [DOI: 10.3390/en14248239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays photovoltaic trade in Poland is growing rapidly due to contemporary challenges in sustainable energy. The first Polish photovoltaic firms were established in the second decade of XXI century. It was the answer of looking for new innovative energy sources including solar energy. It was necessary to change the structure of energy sources in Poland mainly based on carbon and oil & gas. The aim of this article was the identification and assessment the key opportunities and barriers to photovoltaic industry enterprises in Poland in the context of technology entrepreneurship under conditions of information asymmetry. The paper was prepared based on the results of qualitative research using the case study method. A comparative analysis was performed based on results of a study of four purposefully selected enterprises. All of them are SMEs. The research was done in 2021. The case study method allowed for comparing the analysed enterprises in pairs, which is discussed more extensively further on in the text. The research performed will lead to conclusions and recommendations for the photovoltaic sector enterprises in Poland which will allow them to act more effectively and efficiently in conditions of competing on the global market. This paper contains the characteristics of photovoltaic trade in Poland, its macro and micro environment, the opportunities and threats of this trade and key strengths and weaknesses of characterized photovoltaic enterprises in Poland. Finally, the conclusion and recommendations of discussed Polish photovoltaic trade firms in future are evaluated.
Collapse
|
4
|
A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction. ENERGIES 2021. [DOI: 10.3390/en14154424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Science seeks strategies to mitigate global warming and reduce the negative impacts of the long-term use of fossil fuels for power generation. In this sense, implementing and promoting renewable energy in different ways becomes one of the most effective solutions. The inaccuracy in the prediction of power generation from photovoltaic (PV) systems is a significant concern for the planning and operational stages of interconnected electric networks and the promotion of large-scale PV installations. This study proposes the use of Machine Learning techniques to model the photovoltaic power production for a system in Medellín, Colombia. Four forecasting models were generated from techniques compatible with Machine Learning and Artificial Intelligence methods: K-Nearest Neighbors (KNN), Linear Regression (LR), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). The results obtained indicate that the four methods produced adequate estimations of photovoltaic energy generation. However, the best estimate according to RMSE and MAE is the ANN forecasting model. The proposed Machine Learning-based models were demonstrated to be practical and effective solutions to forecast PV power generation in Medellin.
Collapse
|