1
|
Baskar G, Nashath Omer S, Saravanan P, Rajeshkannan R, Saravanan V, Rajasimman M, Shanmugam V. Status and future trends in wastewater management strategies using artificial intelligence and machine learning techniques. CHEMOSPHERE 2024; 362:142477. [PMID: 38844107 DOI: 10.1016/j.chemosphere.2024.142477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The two main things needed to fulfill the world's impending need for water in the face of the widespread water crisis are collecting water and recycling. To do this, the present study has placed a greater focus on water management strategies used in a variety of contexts areas. To distribute water effectively, save it, and satisfy water quality requirements for a variety of uses, it is imperative to apply intelligent water management mechanisms while keeping in mind the population density index. The present review unveiled the latest trends in water and wastewater recycling, utilizing several Artificial Intelligence (AI) and machine learning (ML) techniques for distribution, rainfall collection, and control of irrigation models. The data collected for these purposes are unique and comes in different forms. An efficient water management system could be developed with the use of AI, Deep Learning (DL), and the Internet of Things (IoT) structure. This study has investigated several water management methodologies using AI, DL and IoT with case studies and sample statistical assessment, to provide an efficient framework for water management.
Collapse
Affiliation(s)
- Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119. India; School of Engineering, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Soghra Nashath Omer
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - V Saravanan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - Venkatkumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Bioresource Technology for Bioenergy: Development and Trends. ENERGIES 2022. [DOI: 10.3390/en15051717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2020, the World Bioenergy Association published an interesting report about the global development of using biomass and bioenergy along with statistics and trends [...]
Collapse
|
3
|
A Short Review on Catalyst, Feedstock, Modernised Process, Current State and Challenges on Biodiesel Production. Catalysts 2021. [DOI: 10.3390/catal11111261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biodiesel, comprising mono alkyl fatty acid esters or methyl ethyl esters, is an encouraging option to fossil fuels or diesel produced from petroleum; it has comparable characteristics and its use has the potential to diminish carbon dioxide production and greenhouse gas emissions. Manufactured from recyclable and sustainable feedstocks, e.g., oils originating from vegetation, biodiesel has biodegradable properties and has no toxic impact on ecosystems. The evolution of biodiesel has been precipitated by the continuing environmental damage created by the deployment of fossil fuels. Biodiesel is predominantly synthesised via transesterification and esterification procedures. These involve a number of key constituents, i.e., the feedstock and catalytic agent, the proportion of methanol to oil, the circumstances of the reaction and the product segregation and purification processes. Elements that influence the yield and standard of the obtained biodiesel encompass the form and quantity of the feedstock and reaction catalyst, the proportion of alcohol to feedstock, the temperature of the reaction, and its duration. Contemporary research has evaluated the output of biodiesel reactors in terms of energy production and timely biodiesel manufacture. In order to synthesise biodiesel for industrial use efficaciously, it is essential to acknowledge the technological advances that have significant potential in this sector. The current paper therefore offers a review of contemporary progress, feedstock categorisation, and catalytic agents for the manufacture of biodiesel and production reactors, together with modernised processing techniques. The production reactor, form of catalyst, methods of synthesis, and feedstock standards are additionally subjects of discourse so as to detail a comprehensive setting pertaining to the chemical process. Numerous studies are ongoing in order to develop increasingly efficacious techniques for biodiesel manufacture; these acknowledge the use of solid catalytic agents and non-catalytic supercritical events. This review appraises the contemporary situation with respect to biodiesel production in a range of contexts. The spectrum of techniques for the efficacious manufacture of biodiesel encompasses production catalysed by homogeneous or heterogeneous enzymes or promoted by microwave or ultrasonic technologies. A description of the difficulties to be surmounted going forward in the sector is presented.
Collapse
|