1
|
Methane Pyrolysis in Molten Potassium Chloride: An Experimental and Economic Analysis. ENERGIES 2021. [DOI: 10.3390/en14238182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although steam methane reforming (CH4 + 2H2O → 4H2 + CO2) is the most commercialized process for producing hydrogen from methane, more than 10 kg of carbon dioxide is emitted to produce 1 kg of hydrogen. Methane pyrolysis (CH4 → 2H2 + C) has attracted much attention as an alternative to steam methane reforming because the co-product of hydrogen is solid carbon. In this study, the simultaneous production of hydrogen and separable solid carbon from methane was experimentally achieved in a bubble column filled with molten potassium chloride. The melt acted as a carbon-separating agent and as a pyrolytic catalyst, and enabled 40 h of continuous running without catalytic deactivation with an apparent activation energy of 277 kJ/mole. The resultant solid was purified by water washing or acid washing, or heating at high temperature to remove salt residues from the carbon. Heating the solid product at 1200 °C produced the highest purity carbon (97.2 at%). The economic feasibility of methane pyrolysis was evaluated by varying key parameters, that is, melt loss, melt price, and carbon revenue. Given a potassium chloride loss of <0.1 kg of salt per kg of produced carbon, the carbon revenue was calculated to be USD > 0.45 per kg of produced carbon. In this case, methane pyrolysis using molten potassium chloride may be comparable to steam methane reforming with carbon capture storage.
Collapse
|