1
|
A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning. SUSTAINABILITY 2022. [DOI: 10.3390/su14159255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Household power load forecasting plays an important role in the operation and planning of power grids. To address the prediction issue of household power consumption in power grids, this paper chooses a time series of historical power consumption as the feature variables and uses landmark-based spectral clustering (LSC) and a deep learning model to cluster and predict the power consumption dataset, respectively. Firstly, the investigated data are reshaped into a matrix and all missing entries are recovered by matrix completion. Secondly, the data samples are divided into three clusters by the LSC method according to the periodicity and regularity of power consumption. Then, all samples in each cluster are expanded via bootstrap aggregating technique. Subsequently, a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) is employed to predict power consumption. The goal of CNN is to extract the features from input data in sequence learning, and LSTM aims to train and predict the power consumption. Finally, the forecasting performance of the LSC–CNN–LSTM is compared with several other deep learning models to verify its reliability and effectiveness in the field of household power load. The experimental results show that the proposed hybrid method is superior to other state-of-the-art deep learning techniques in forecasting performance.
Collapse
|
2
|
Machine Learning in Operating of Low Voltage Future Grid. ENERGIES 2022. [DOI: 10.3390/en15155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The article is a continuation of the authors’ ongoing research related to power flow and voltage control in LV grids. It outlines how the Distribution System Operator (DSO) can use Machine Learning (ML) technology in a future grid. Based on supervised learning, a Selectively Coherent Model of Converter System Control for an LV grid (SCM_CSC) is proposed. This represents a fresh, new approach to combining off and on-line computing for DSOs, in line with the decarbonisation process. The main kernel of the model is a neural network developed from the initial prediction results generated by regression analysis. For selected PV system operation scenarios, the LV grid of the future dynamically controls the power flow using AC/DC converter circuits for Battery Energy Storage Systems (BESS). The objective function is to maintain the required voltage conditions for high PV generation in an LV grid line area and to minimise power flows to the MV grid. Based on the training and validation data prepared for artificial neural networks (ANN), a Mean Absolute Percentage Error (MAPE) of 0.15% BESS and 0.51–0.55% BESS 1 and BESS 2 were achieved, which represents a prediction error level of 170–300 VA in the specification of the BESS power control. The results are presented for the dynamic control of BESS 1 and BESS 2 using an ANN output and closed-loop PID control including a 2nd order filter. The research work represents a further step in the digital transformation of the energy sector.
Collapse
|
3
|
Abstract
Energy efficiency is one of the most important current challenges, and its impact at a global level is considerable. To solve current challenges, it is critical that consumers are able to control their energy consumption. In this paper, we propose using a time series of window-based entropy to detect anomalies in the electricity consumption of a household when the pattern of consumption behavior exhibits a change. We compare the accuracy of this approach with two machine learning approaches, random forest and neural networks, and with a statistical approach, the ARIMA model. We study whether these approaches detect the same anomalous periods. These different techniques have been evaluated using a real dataset obtained from different households with different consumption profiles from the Madrid Region. The entropy-based algorithm detects more days classified as anomalous according to context information compared to the other algorithms. This approach has the advantages that it does not require a training period and that it adapts dynamically to changes, except in vacation periods when consumption drops drastically and requires some time for adapting to the new situation.
Collapse
|