Khan A, Ullah F, Shah D, Khan MH, Ali S, Tahir M. EcoTaskSched: a hybrid machine learning approach for energy-efficient task scheduling in IoT-based fog-cloud environments.
Sci Rep 2025;
15:12296. [PMID:
40211053 PMCID:
PMC11986057 DOI:
10.1038/s41598-025-96974-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
The widespread adoption of cloud services has posed several challenges, primarily revolving around energy and resource efficiency. Integrating cloud and fog resources can help address these challenges by improving fog-cloud computing environments. Nevertheless, the search for optimal task allocation and energy management in such environments continues. Existing studies have introduced notable solutions; however, it is still a challenging issue to efficiently utilize these heterogeneous cloud resources and achieve energy-efficient task scheduling in fog-cloud of things environment. To tackle these challenges, we propose a novel ML-based EcoTaskSched model, which leverages deep learning for energy-efficient task scheduling in fog-cloud networks. The proposed hybrid model integrates Convolutional Neural Networks (CNNs) with Bidirectional Log-Short Term Memory (BiLSTM) to enhance energy-efficient schedulability and reduce energy usage while ensuring QoS provisioning. The CNN model efficiently extracts workload features from tasks and resources, while the BiLSTM captures complex sequential information, predicting optimal task placement sequences. A real fog-cloud environment is implemented using the COSCO framework for the simulation setup together with four physical nodes from the Azure B2s plan to test the proposed model. The DeFog benchmark is used to develop task workloads, and data collection was conducted for both normal and intense workload scenarios. Before preprocessing the data was normalized, treated with feature engineering and augmentation, and then split into training and test sets. To evaluate performance, the proposed EcoTaskSched model demonstrated superiority by significantly reducing energy consumption and improving job completion rates compared to baseline models. Additionally, the EcoTaskSched model maintained a high job completion rate of 85%, outperforming GGCN and BiGGCN. It also achieved a lower average response time, and SLA violation rates, as well as increased throughput, and reduced execution cost compared to other baseline models. In its optimal configuration, the EcoTaskSched model is successfully applied to fog-cloud computing environments, increasing task handling efficiency and reducing energy consumption while maintaining the required QoS parameters. Our future studies will focus on long-term testing of the EcoTaskSched model in real-world IoT environments. We will also assess its applicability by integrating other ML models, which could provide enhanced insights for optimizing scheduling algorithms across diverse fog-cloud settings.
Collapse