1
|
Gupta RK, Patel SKS, Lee JK. Novel cofactor regeneration-based magnetic metal-organic framework for cascade enzymatic conversion of biomass-derived bioethanol to acetoin. BIORESOURCE TECHNOLOGY 2024; 408:131175. [PMID: 39084533 DOI: 10.1016/j.biortech.2024.131175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Upgrading biomass-derived bioethanol to higher-order alcohols using conventional biotechnological approaches is challenging. Herein, a novel, magnetic metal-organic-framework-based cofactor regeneration system was developed using ethanol dehydrogenase (EtDH:D46G), NADH oxidase (NOX), formolase (FLS:L482S), and nicotinamide adenine dinucleotide (NAD+) for converting rice straw-derived bioethanol to acetoin. A magnetic zeolitic imidazolate framework-8@Fe3O4/NAD+ (ZIF-8@Fe3O4/NAD+) regeneration system for cell-free cascade reactions was introduced and used to encapsulate EtDH:D46G, NOX, and FLS:L482S (ENF). ZIF-8@Fe3O4/NAD+ENF created an efficient microenvironment for three-step enzyme cascades. Under the optimized conditions, the yield of acetoin from 100 mM bioethanol using ZIF-8@Fe3O4/NAD+ENF was 90.4 %. The regeneration system showed 97.1 % thermostability at 50 °C. The free enzymes retained only 16.3 % residual conversion, compared with 91.2 % for ZIF-8@Fe3O4/NAD+ENF after ten cycles. The magnetic metal-organic-framework-based cofactor regeneration system is suitable for enzymatic cascade biotransformations and can be extended to other cascade systems for potential biotechnological applications.
Collapse
Affiliation(s)
- Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Geng K, Lin Y, Zheng X, Li C, Chen S, Ling H, Yang J, Zhu X, Liang S. Enhanced Expression of Alcohol Dehydrogenase I in Pichia pastoris Reduces the Content of Acetaldehyde in Wines. Microorganisms 2023; 12:38. [PMID: 38257867 PMCID: PMC10820543 DOI: 10.3390/microorganisms12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Acetaldehyde is an important carbonyl compound commonly detected in wines. A high concentration of acetaldehyde can affect the flavor of wines and result in adverse effects on human health. Alcohol dehydrogenase I (ADH1) in Saccharomyces cerevisiae catalyzes the reduction reaction of acetaldehyde into ethanol in the presence of cofactors, showing the potential to reduce the content of acetaldehyde in wines. In this study, ADH1 was successfully expressed in Pichia pastoris GS115 based on codon optimization. Then, the expression level of ADH1 was enhanced by replacing its promoter with optimized promoters and increasing the copy number of the expression cassette, with ADH1 being purified using nickel column affinity chromatography. The enzymatic activity of purified ADH1 reached 605.44 ± 44.30 U/mg. The results of the effect of ADH1 on the content of acetaldehyde in wine revealed that the acetaldehyde content of wine samples was reduced from 168.05 ± 0.55 to 113.17 ± 6.08 mg/L with the addition of 5 mM NADH and the catalysis of ADH1, and from 135.53 ± 4.08 to 52.89 ± 2.20 mg/L through cofactor regeneration. Our study provides a novel approach to reducing the content of acetaldehyde in wines through enzymatic catalysis.
Collapse
Affiliation(s)
- Kun Geng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xueyun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Fermentation Engineering of Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - He Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiangyu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Fabrication of Fe3O4@SiO2@PDA-Ni2+ nanoparticles for one-step affinity immobilization and purification of His-tagged glucose dehydrogenase. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|