1
|
Kaziūnienė J, Pini F, Shamshitov A, Razbadauskienė K, Frercks B, Gegeckas A, Mažylytė R, Lapinskienė L, Supronienė S. Genetic Characterization of Rhizobium spp. Strains in an Organic Field Pea ( Pisum sativum L.) Field in Lithuania. PLANTS (BASEL, SWITZERLAND) 2024; 13:1888. [PMID: 39065414 PMCID: PMC11280047 DOI: 10.3390/plants13141888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Biological nitrogen fixation in legume plants depends on the diversity of rhizobia present in the soil. Rhizobial strains exhibit specificity towards host plants and vary in their capacity to fix nitrogen. The increasing interest in rhizobia diversity has prompted studies of their phylogenetic relations. Molecular identification of Rhizobium is quite complex, requiring multiple gene markers to be analysed to distinguish strains at the species level or to predict their host plant. In this research, 50 rhizobia isolates were obtained from the root nodules of five different Pisum sativum L. genotypes ("Bagoo", "Respect", "Astronaute", "Lina DS", and "Egle DS"). All genotypes were growing in the same field, where ecological farming practices were applied, and no commercial rhizobia inoculants were used. The influence of rhizobial isolates on pea root nodulation and dry biomass accumulation was determined. 16S rRNA gene, two housekeeping genes recA and atpD, and symbiotic gene nodC were analysed to characterize rhizobia population. The phylogenetic analysis of 16S rRNA gene sequences showed that 46 isolates were linked to Rhizobium leguminosarum; species complex 1 isolate was identified as Rhizobium nepotum, and the remaining 3 isolates belonged to Rahnella spp., Paenarthrobacter spp., and Peribacillus spp. genera. RecA and atpD gene analysis showed that the 46 isolates identified as R. leguminosarum clustered into three genospecies groups (B), (E) and (K). Isolates that had the highest influence on plant dry biomass accumulation clustered into the (B) group. NodC gene phylogenetic analysis clustered 46 R. leguminosarum isolates into 10 groups, and all isolates were assigned to the R. leguminosarum sv. viciae.
Collapse
Affiliation(s)
- Justina Kaziūnienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania (S.S.)
| | - Francesco Pini
- Department of Biology, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Arman Shamshitov
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania (S.S.)
| | - Kristyna Razbadauskienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania (S.S.)
| | - Birutė Frercks
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania
| | - Audrius Gegeckas
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Raimonda Mažylytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Laura Lapinskienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania
| | - Skaidrė Supronienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania (S.S.)
| |
Collapse
|
2
|
Denitrification in Intrinsic and Specific Groundwater Vulnerability Assessment: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several groundwater vulnerability methodologies have been implemented throughout the years to face the increasing worldwide groundwater pollution, ranging from simple rating methodologies to complex numerical, statistical, and hybrid methods. Most of these methods have been used to evaluate groundwater vulnerability to nitrate, which is considered the major groundwater contaminant worldwide. Together with dilution, the degradation of nitrate via denitrification has been acknowledged as a process that can reduce reactive nitrogen mass loading rates in both deep and shallow aquifers. Thus, denitrification should be included in groundwater vulnerability studies and integrated into the various methodologies. This work reviewed the way in which denitrification has been considered within the vulnerability assessment methods and how it could increase the reliability of the overall results. Rating and statistical methods often disregard or indirectly incorporate denitrification, while numerical models make use of kinetic reactions that are able to quantify the spatial and temporal variations of denitrification rates. Nevertheless, the rating methods are still the most utilized, due to their linear structures, especially in watershed studies. More efforts should be paid in future studies to implement, calibrate, and validate user-friendly vulnerability assessment methods that are able to deal with denitrification capacity and rates at large spatial and temporal scales.
Collapse
|
3
|
Abstract
Groundwater is a valuable and finite resource covering only 30% of the freshwater (3% of the total volume of water) on Earth [...]
Collapse
|
4
|
Hydrogeological and Hydrochemical Regime Evaluation in Flamouria Basin in Edessa (Northern Greece). ENVIRONMENTS 2020. [DOI: 10.3390/environments7120105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Groundwater quality deterioration and overexploitation constitute two critical environmental issues worldwide. In this study, with the aim to achieve a groundwater sustainability purpose, a preliminary hydrogeochemical survey is conducted in the Flamouria basin, Pella prefecture, Northern Greece using available and collected data. For this purpose, chemical analyses of groundwater, springs, and surface water were collected and analyzed with three electrical resistivity tomographies (ERTs). A Groundwater Quality Index (GQI), along with a nitrate susceptibility assessment is applied within the porous aquifer. The water quality analysis along with GQI application showed excellent water quality for potable and irrigation use however highlighted future issue for irrigation utilization as the high alkalinity and total dissolved solid (TDS)could generate excessive soil salinization. Moreover, the application of a methodology for the identification of “Nitrate Vulnerable Zone” called the Protection from Natural and Anthropogenic sources (PNA) highlighted the natural susceptibility to nitrate pollution of the porous aquifer, especially in the central part of the area where most agricultural activity is localized. The work further confirmed how the proposed elaboration could represent an easy and widely applicable hydrological assessment where there is also limited data available.
Collapse
|