1
|
Zhou W, Zhao X, Hassan A, Jia B, Liu L, Huang Q. Uncovering the function of insulin receptor substrate in termites' immunity through active immunization. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:1. [PMID: 38958928 PMCID: PMC11221318 DOI: 10.1093/jisesa/ieae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Insulin receptor substrate (IRS) proteins are key mediators in insulin signaling pathway. In social insect lives, IRS proteins played important roles in caste differentiation and foraging, but there function in disease defenses such as active immunization has not been reported yet. To investigate the issue, we successfully suppressed the IRS gene 3 days after dsRNA injection. Suppressing IRS gene increased the contents of glucose, trehalose, glycogen, and triglyceride and decreased the content of pyruvate in termites, and led to the metabolic disorder of glucose and lipids. IRS suppressing significantly enhanced grooming behaviors of nestmates of fungus-contaminated termites and hence increased the conidial load in the guts of the nestmates. Additionally, IRS suppressing led to significant downregulation of the immune genes Gram-negative bacteria-binding protein2 (GNBP2) and termicin and upregulation of the apoptotic gene caspase8, and hence diminished antifungal activity of nestmates of fungus-contaminated termites. The above abnormal behavioral and physiological responses significantly decreased the survival rate of dsIRS-injected nestmates of the fungus-contaminated termites. These findings suggest that IRS is involved in regulation of active immunization in termites, providing a better understanding of the link between insulin signaling and the social immunity of termites.
Collapse
Affiliation(s)
- Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingying Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Jia
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Long Liu
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang L, Yi C, Du C, Wen C, Li Z, Chen Y, Wen X, Wang C. Trichoderma metabolites trigger aggregation behavior in Formosan subterranean termites (Coptotermes formosanus). INSECT SCIENCE 2023; 30:1759-1772. [PMID: 36916036 DOI: 10.1111/1744-7917.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Our previous studies have shown that some Trichoderma fungi trigger aggregation behavior in Formosan subterranean termites, Coptotermes formosanus Shiraki. However, the mechanisms underlying the induction of termite aggregation by Trichoderma fungi remain unclear. Here, we found that the aqueous or acetone extract of Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg and Trichoderma virens Pers. ex Fries isolated from the gut or cuticle of C. formosanus elicited significant termite aggregation in 2-choice tests. We then screened 9 Trichoderma metabolites (3-acetoxy-2-butanone, phenol, 3-ethoxypropionic acid, ethyl 2,4-dioxovalerate, diglycolic acid, d-valine, styrene, 3-aminopyridine, and hexyl acetoacetate) that triggered termite aggregation. Among them, phenol (1 000 μg/mL), 3-ethoxypropionic acid (10 μg/mL), ethyl 2,4-dioxovalerate (1 000 μg/mL), and diglycolic acid (1 000 μg/mL) showed the strongest activities, triggering termite aggregation throughout the 24-h period. As T. asperellum and T. virens produce different metabolites that trigger aggregation behavior in termites, the mechanisms underlying the interaction between subterranean termites and Trichoderma fungi likely vary. Future studies are needed to test whether these chemicals can attract termites and increase bait consumption.
Collapse
Affiliation(s)
- Lang Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cong Yi
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chengju Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chao Wen
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiujun Wen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Lodi RS, Peng C, Dong X, Deng P, Peng L. Trichoderma hamatum and Its Benefits. J Fungi (Basel) 2023; 9:994. [PMID: 37888250 PMCID: PMC10607699 DOI: 10.3390/jof9100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Trichoderma hamatum (Bonord.) Bainier (T. hamatum) belongs to Hypocreaceae family, Trichoderma genus. Trichoderma spp. are prominently known for their biocontrol activities and plant growth promotion. Hence, T. hamatum also possess several beneficial activities, such as antimicrobial activity, antioxidant activity, insecticidal activity, herbicidal activity, and plant growth promotion; in addition, it holds several other beneficial properties, such as resistance to dichlorodiphenyltrichloroethane (DDT) and degradation of DDT by certain enzymes and production of certain polysaccharide-degrading enzymes. Hence, the current review discusses the beneficial properties of T. hamatum and describes the gaps that need to be further considered in future studies, such as T. hamatum's potentiality against human pathogens and, in contrast, its role as an opportunistic human pathogen. Moreover, there is a need for substantial study on its antiviral and antioxidant activities.
Collapse
Affiliation(s)
| | | | | | | | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (R.S.L.); (C.P.); (X.D.); (P.D.)
| |
Collapse
|
4
|
Diversity of Cellulolytic Microorganisms Associated with the Subterranean Termite Reticulitermes grassei. J Fungi (Basel) 2023; 9:jof9030294. [PMID: 36983462 PMCID: PMC10051133 DOI: 10.3390/jof9030294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Reticulitermes grassei is a subterranean termite species that forages on woody structures of the Iberian Peninsula, and is often a building and crops pest. A total of 23 microorganisms associated with the activity of R. grassei were isolated from colonized ecosystems in southern Spain. They were morphologically and molecularly characterized, with fungi being the most prevalent ones. The fungi showed high values of optimum growth temperature, suggesting that they could be able to survive and develop in warm regions. Their cellulolytic activity was tested in carboxymethylcellulose (CMC) agar, concluding that all fungal isolates produce cellulases, and the enzymatic index (EI) was revealed in CMC agar with Gram’s iodine solution, with Penicillium citrinum showing the highest EI and Trichoderma longibrachiatum the highest mycelial growth rate on CMC. A preliminary microorganism dispersion assay was carried out with the termites, concluding that these insects may have a positive influence on fungal dispersion and the subsequent colonization of new substrates. Our study suggests that fungi associated with R. grassei may potentially be of interest in biotechnological fields such as biofuel production and the food industry.
Collapse
|
5
|
Ganassi S, Domenico CD, Altomare C, Samuels GJ, Grazioso P, Cillo PD, Pietrantonio L, De Cristofaro A. Potential of fungi of the genus Trichoderma for biocontrol of Philaenus spumarius, the insect vector for the quarantine bacterium Xylella fastidosa. PEST MANAGEMENT SCIENCE 2023; 79:719-728. [PMID: 36256490 DOI: 10.1002/ps.7240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The meadow spittlebug Philaenus spumarius L. is the vector for the bacterium Xylella fastidiosa subspecies pauca, involved in olive quick decline syndrome (OQDS) in Salento (Italy). Control of P. spumarius is key to limiting transmission of the bacterium, and an innovative approach can be based on effective natural compounds and biocontrol agents. Entomopathogenic fungi are an important source of bioactive natural molecules that play a role in the relationship between microorganisms and insects. RESULTS Pathogenicity bioassays, performed by dipping adults of P. spumarius in either fungal culture suspension (120 mg mL-1 ) or cell-free culture supernatant of Trichoderma chlorosporum GJS 91-150, showed, respectively, 97% and 87% death within 24 h. The effect was dose-dependent. In laboratory bioassays, the powdered fungal culture of T. chlorosporum GJS 91-150 did not exhibit pathogenic activity when injected into nymph spittle. CONCLUSIONS T. chlorosporum GJS 91-150 affected the survival of P. spumarius adults. The lethal effect was not associated with the development of mycelium on the cuticle, but seems due, at least partly, to fungal metabolites released in the culture medium. The fungus tested here has good potential for the development of effective low-environmental impact control strategies for P. spumarius and suppression of X. fastidiosa. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Carmela Di Domenico
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | - Gary J Samuels
- USDA-ARS Systematic Mycology and Microbiology Lab, Beltsville, MD, USA
| | - Pasqualina Grazioso
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
6
|
Fungus-insect symbiosis: Diversity and negative ecological role of the hypocrealean fungus Trichoderma harzianum in colonies of neotropical termites (Blattodea: Termitidae). FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Jin Z, Chen J, Wen X, Wang C. Effects of clay materials and moisture levels on habitat preference and survivorship of Formosan subterranean termite, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae). PeerJ 2020; 8:e10243. [PMID: 33194422 PMCID: PMC7602681 DOI: 10.7717/peerj.10243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Formosan subterranean termites, Coptotermes formosanus Shiraki, usually transport clay materials into tree hollows and bait stations. Our previous research showed that C. formosanus preferred to aggregate in the locations containing field-collected clay samples, but it was not clear whether this preference was influenced by clay types and/or moisture. In the present study, we conducted multiple-choice tests under low-moisture (25% moisture) or moderate-moisture (50% moisture) conditions to evaluate the aggregation and wood-feeding preferences of C. formosanus responding to hollow wooden cylinders (simulation of tree hollows) or baiting containers (simulation of bait stations) filled with different clay materials (bentonite , kaolin, chlorite, illite, or attapulgite), soil, or unfilled. Under low-moisture conditions, the majority of termites were found in the wooden cylinders or baiting containers filled with bentonite. Under moderate-moisture conditions, however, termites preferred to aggregate in wooden cylinders filled with chlorite or attapulgite; the percentages of termites that stayed in baiting containers filled with chlorite, attapulgite or soil were similar, which were significantly higher than those that filled with kaolin, illite, or unfilled. We then conducted no-choice tests to study the effect of clay materials on termites. Under low-moisture conditions, clay filled in the baiting containers significantly increased survivorship and body water percentage (an indicator of termite vigor) of termites, whereas no similar effect was detected under moderate-moisture conditions. This study demonstrated that both clay type and moisture affect termites' preference.
Collapse
Affiliation(s)
- Zhengya Jin
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Chen
- Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS, United States of America
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Wen C, Xiong H, Wen J, Wen X, Wang C. Trichoderma Species Attract Coptotermes formosanus and Antagonize Termite Pathogen Metarhizium anisopliae. Front Microbiol 2020; 11:653. [PMID: 32328057 PMCID: PMC7160823 DOI: 10.3389/fmicb.2020.00653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Although subterranean termites live within soil, little attention has been paid on the potential interaction among subterranean termites and soil microbes. Herein, we conducted different choice tests to investigate aggregation and tunneling behaviors of Coptotermes formosanus Shiraki responding to soil/sand treated with conidia of seven soil fungi, Trichoderma longibrachiatum Rifai, Trichoderma koningii Oud., Trichoderma hamatum (Bon.) Bain., Trichoderma atroviride Karsten, Trichoderma spirale Indira and Kamala, Trichoderma harzianum Rifai, and Trichoderma viride Pers. ex Fries. In aggregation-choice test, soil treated with nearly all Trichoderma species tested (except T. koningii) significantly increased termite aggregation compared with untreated soil. In tunneling-choice tests, termites produced significantly larger tunnels in sand treated with T. longibrachiatum or T. koningii than that in untreated sand. We hypothesized that Trichoderma species could benefit termites by protecting them from infection of the entomopathogenic fungus Metarhizium anisopliae (Metschn) Sorokin, and three Trichoderma species that attracted termites (T. longibrachiatum, T. atroviride, and T. harzianum) were tested. The antagonism tests showed that the three Trichoderma species suppressed growth of M. anisopliae. Also, the median lethal time (LT50) of termites exposed to both Trichoderma species and M. anisopliae was significantly longer than termites exposed to M. anisopliae alone. Interestingly, though significantly fewer termites aggregated in soil treated with M. anisopliae conidia compared with untreated soil, M. anisopliae conidia mixed with T. longibrachiatum or T. harzianum were no longer repellent to termites. Our results showed that the fungi in the genus Trichoderma (1) exerted generally attractive effects on termites, (2) protected termites from the infection of entomopathogenic fungus, and (3) altered pathogen-avoiding behaviors of termites. Future studies will be required to understand the mechanisms underlying these newly discovered effects.
Collapse
Affiliation(s)
- Chao Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Hongpeng Xiong
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|