1
|
Meher AK, Abbas A. PTR-MS analysis of fungal VOCs for early detection of oak wilt. Anal Bioanal Chem 2025:10.1007/s00216-025-05880-6. [PMID: 40272508 DOI: 10.1007/s00216-025-05880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Traditional methods for diagnosing bacterial or fungal infections, such as cell culture, are comprehensive but time-consuming and subjective. Microbial volatile organic compound (VOC) analysis offers a faster alternative, though challenges such as low concentrations and chemical heterogeneity persist. Gas chromatography-mass spectrometry (GC-MS), while highly sensitive, requires lengthy sample preparation. This study presents a novel approach using proton transfer-reaction mass spectrometry (PTR-MS) for direct headspace analysis of fungal cultures, eliminating the need for preconcentration steps. By culturing microbes in wide-mouth glass jars with septum caps, VOC profiles were obtained in under 30 s for samples which were incubated for just 1 day, thus significantly reducing the diagnosis time. Using Bretziella fagacearum, a model organism known for its distinctive fruity odor linked to oak wilt disease, this method demonstrated enhanced accuracy and speed in detecting characteristic VOCs. The high sensitivity and rapid turnaround of this technique offer a promising alternative to traditional cell culture and GC-MS methods, providing faster, more reliable diagnostics and reducing both the complexity and time required for pathogen identification.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Sithole C, Sinthumule RR, Gaorongwe JL, Ruzvidzo O, Dikobe TB. Unraveling the complexities: morpho-physiological and proteomic responses of pearl millet ( Pennisetum glaucum) to dual drought and salt stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1495562. [PMID: 40313725 PMCID: PMC12044532 DOI: 10.3389/fpls.2025.1495562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Agriculture is crucial for sustaining the world's growing population, however various abiotic and biotic stressors, such as drought and salt, significantly impact crop yields. Pearl millet, a nutrient-rich and drought-tolerant crop, is essential as a food source in arid regions. Understanding its response mechanisms to drought and salt stress is important for devising strategies for improved crop performance under water deficit and saline environments. This study investigated the pearl millet's morphological, physiological, and molecular responses subjected to individual and combined drought and salt stresses for 25 days. Significant reductions in morphological traits, such as plant height, shoot and root fresh weights and lengths, and leaf numbers were observed. Furthermore, key physiological parameters, including chlorophyll content, stomatal conductance, photosynthesis, and transpiration rates notably declined, indicating a complex interaction between stress factors and water regulation mechanisms. Protein expression analysis showed differential upregulation and downregulation patterns between the control and stressed pearl millet plants. Gene ontology mapping identified key biological processes, molecular functions, and cellular components of differentially expressed proteins associated with individual and combined stresses. Notably, a high number of unclassified proteins were identified, indicating the presence of potentially novel proteins involved in stress adaptation. Catalytic and binding activities were the predominant molecular functions detected across treatments suggesting their central role in stress response. These highlighted potential mechanisms of tolerance and adaptation in pearl millet. Overall, this study provides a comprehensive understanding of the detrimental effects of drought and salinity on pearl millet at the morphological, physiological, and proteomic levels, uncovering previously unexplored proteomic responses. These insights offer valuable molecular marker targets for breeding programs aimed at enhancing stress tolerance in pearl millet and related crops.
Collapse
Affiliation(s)
| | | | | | | | - Tshegofatso Bridget Dikobe
- Unit for Environmental Sciences and Management, Department of Botany, North-West University, Mmabatho, South Africa
| |
Collapse
|
3
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
4
|
Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites. FORESTS 2022. [DOI: 10.3390/f13060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In urban environments, newly planted street trees suffer from poor site conditions and limited water availability. It is challenging to provide site conditions that allow the trees to thrive in the long term, particularly under climate change. Knowledge about the hydrological properties of artificial urban planting soils related to the response of tree species-specific growth is crucial, but still lacking. Therefore, we established a three-year experimental field setup to investigate the response of nine tree species (135 individuals) to two common urban planting soils and a loamy silt reference. We determined and measured soil hydrological parameters and monitored tree growth. Our results revealed low plant available water capacities (6% and 10% v/v) and hydraulic conductivity restrictions with the drying of the sandy-textured urban planting soils. Therefore, tree species that are investing in fine root growth to extract water from dry soils might be more successful than trees that are lowering their water potential. Tree growth was overall evidently lower in the urban planting soils compared with the reference and differed between and within the species. We showed that using unfavorable planting soils causes severe, species-specific growth deficits reflecting limited above-ground carbon uptake as a consequence of low water availability.
Collapse
|
5
|
Lebrun M, Bouček J, Bímová KB, Kraus K, Haisel D, Kulhánek M, Omara-Ojungu C, Seyedsadr S, Beesley L, Soudek P, Petrová Š, Pohořelý M, Trakal L. Biochar in manure can suppress water stress of sugar beet (Beta vulgaris) and increase sucrose content in tubers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152772. [PMID: 34986421 DOI: 10.1016/j.scitotenv.2021.152772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Increased soil drought events threaten the yields of sugar beet (Beta vulgaris L.) and other staples of arable production in central Europe. In this study we evaluated soil moisture and nutrients as impacted by a two and five % (wt) addition of biochar, manure and their blend to a loamy-sand Regosol. Cyclical soil drought was achieved by the controlled reduction of watering by 75% in pot experiments. Ongoing soil moisture and nutrient measurements were taken, and physiological parameters of sugar beet plants were analysed three weeks after the induced drought. At the end of the experiment (16 weeks) plants were harvested and their mass assessed, as well as their nutrient, pigment and sugar contents. In contrast to the addition of manure, soil volumetric water contents were two to three times greater after biochar amendment, compared to the control soil. Porewater analysis revealed that nutrient leaching (e.g., NO3-, K+) from manure addition to soil was reduced when biochar was blended in (by ≤86% compared to manure alone). Crop analysis showed that leaf gas exchanges were moderated during drought following soil amendment, and leaf and tuber yields were increased furthest when combined biochar-manure blends were applied (> 2-times compared to the control). Perhaps most importantly, the advantageous soil conditions induced by the combined biochar and manure addition also resulted in significantly increased sugar contents in plants (2.4-times) pointing to immediate practical applications of these results in the field.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 78850 Thiverval-Grignon, France; Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Jiří Bouček
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 1176, 165 21 Prague 6, Suchdol, Czech Republic; Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, Praha 6 - Suchdol, 16521, Czech Republic
| | - Kateřina Berchová Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 1176, 165 21 Prague 6, Suchdol, Czech Republic
| | - Kamil Kraus
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany CAS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Martin Kulhánek
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Carol Omara-Ojungu
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Samar Seyedsadr
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Luke Beesley
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Petr Soudek
- Institute of Experimental Botany CAS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Šárka Petrová
- Institute of Experimental Botany CAS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Michael Pohořelý
- Environmental Process Engineering Laboratory, Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, v. v. i., Rozvojová 135, Praha 6, Suchdol 165 02, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic.
| |
Collapse
|
6
|
Paoletti E, Hoshika Y, Arab L, Martini S, Cotrozzi L, Weber D, Ache P, Neri L, Baraldi R, Pellegrini E, Müller HM, Hedrich R, Alfarraj S, Rennenberg H. Date palm responses to a chronic, realistic ozone exposure in a FACE experiment. ENVIRONMENTAL RESEARCH 2021; 195:110868. [PMID: 33581095 DOI: 10.1016/j.envres.2021.110868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Date palms are highly economically important species in hot arid regions, which may suffer ozone (O3) pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O3. Therefore, to identify their resistance mechanisms against elevated O3, physiological parameters (leaf gas exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O3 exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air Controlled Exposure (FACE) facility with three levels of O3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as early indicators of O3 stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of PSII and reduced performance index PITOT. As a result, O3 did not affect most of the growth parameters although significant declines of root biomass occurred only at 2 x AA. The major mechanism in date palm for reducing the severity of O3 impacts was a restriction of stomatal O3 uptake due to low stomatal conductance and O3-induced stomatal closure. In addition, an increased respiration in elevated O3 may indicate an enhanced capacity of catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5 and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance against O3 stress.
Collapse
Affiliation(s)
- Elena Paoletti
- IRET-CNR, Via Madonna Del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna Del Piano 10, 50019, Sesto Fiorentino Firenze, Italy.
| | - Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany
| | - Sofia Martini
- IRET-CNR, Via Madonna Del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Daniel Weber
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany; Phytoprove Pflanzenanalytik, Georg-Voigt-Str. 14-16, 60325, Frankfurt Am Main, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Luisa Neri
- IBE-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Rita Baraldi
- IBE-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany; King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| |
Collapse
|