1
|
Venice F, Vizzini A, Danti R, Della Rocca G, Mello A. Responses of a soil fungal community to severe windstorm damages in an old silver fir stand. Front Microbiol 2023; 14:1246874. [PMID: 38029204 PMCID: PMC10668432 DOI: 10.3389/fmicb.2023.1246874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Forests are increasingly threatened by climate change and the Anthropocene seems to have favored the emergence and adaptation of pathogens. Robust monitoring methods are required to prevent biodiversity and ecosystems losses, and this imposes the choice of bioindicators of habitat health. Fungal communities are increasingly recognized as fundamental components in nearly all natural and artificial environments, and their ecosystem services have a huge impact in maintaining and restoring the functionality of ecosystems. We coupled metabarcoding and soil analyses to infer the dynamics of a fungal community inhabiting the old silver fir stand in Vallombrosa (Italy), which is known to be afflicted by both Armillaria and Annosum root rot. The forest was affected in 2015, by a windstorm which caused a partial falling and uprooting of trees. The remaining stand, not affected by the windstorm, was used as a comparison to infer the consequences of the ecosystem disturbance. We demonstrated that the abundance of pathogens alone is not able to explain the soil fungal differences shown by the two areas. The fungal community as a whole was equally rich in the two areas, even if a reduction of the core ectomycorrhizal mycobiome was observed in the wind-damaged area, accompanied by the increase of wood saprotrophs and arbuscular mycorrhizas. We hypothesize a reshaping of the fungal community and a potentially ongoing re-generation of its functionalities. Our hypothesis is driven by the evidence that key symbiotic, endophytic, and saprotrophic guilds are still present and diversified in the wind-damaged area, and that dominance of single taxa or biodiversity loss was not observed from a mycological point of view. With the present study, we aim at providing evidence that fungal communities are fundamental for the monitoring and the conservation of threatened forest ecosystems.
Collapse
Affiliation(s)
- Francesco Venice
- Institute for Sustainable Plant Protection (IPSP) - SS Turin - National Research Council (CNR), Turin, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Alfredo Vizzini
- Institute for Sustainable Plant Protection (IPSP) - SS Turin - National Research Council (CNR), Turin, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Roberto Danti
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), Sesto Fiorentino (FI), Italy
| | - Gianni Della Rocca
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), Sesto Fiorentino (FI), Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP) - SS Turin - National Research Council (CNR), Turin, Italy
| |
Collapse
|
2
|
Piri T, Saarinen M, Hamberg L, Hantula J, Gaitnieks T. Efficacy of Biological and Chemical Control Agents against Heterobasidion Spore Infections of Norway Spruce and Scots Pine Stumps on Drained Peatland. J Fungi (Basel) 2023; 9:jof9030346. [PMID: 36983514 PMCID: PMC10053854 DOI: 10.3390/jof9030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Treatment of conifer stumps with a control agent effectively prevents Heterobasidion spore infections in summer cuttings and protects the residual stand and the next tree generation from damage caused by Heterobasidion root rot. Thus far, stump treatment experiments have been carried out in mineral soils, and no information is available on the efficacy of stump treatment agents in boreal peatland conditions. In the present study, biological and chemical control agents (Phlebiopsis gigantea and urea, respectively) were tested in Scots pine and Norway spruce stands subjected to thinning, cap cutting, and clearcutting on drained peatland in Central Finland. The control efficacy of urea was high in both spruce and pine stumps (on average 99.5 and 85.3%, respectively), while the efficacy of P. gigantea was highly variable on both tree species and ranged from full protection down to negative control effect, i.e., there were more Heterobasidion infections on the treated than untreated half of the stumps. The moisture content of the stump wood or the thickness of the peat layer did not affect the control efficacy of either control agent. These results emphasize a need for further studies to determine the reasons for the unsteadiness of the biological control in peatland conditions.
Collapse
Affiliation(s)
- Tuula Piri
- Natural Resources Institute Finland (Luke), Natural Resources, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland
- Correspondence:
| | - Markku Saarinen
- Natural Resources Institute Finland (Luke), Natural Resources, Forest Management, Tietotie 4, 31600 Jokioinen, Finland
| | - Leena Hamberg
- Natural Resources Institute Finland (Luke), Natural Resources, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Natural Resources, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Talis Gaitnieks
- Latvian State Forest Research Insitute Silava, Forest Phytopathology and Mycology, 111 Riga Str., LV-2169 Salaspils, Latvia
| |
Collapse
|
3
|
Sadowska A, Sawicka D, Godlewska K, Guzińska-Ustymowicz K, Zapora E, Sokołowska E, Car H. Beneficial Proapoptotic Effect of Heterobasidion Annosum Extract in Colorectal Cancer Xenograft Mouse Model. Molecules 2023; 28:molecules28031352. [PMID: 36771018 PMCID: PMC9919637 DOI: 10.3390/molecules28031352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Fungal extracts possess potential anticancer activity against many malignant neoplastic diseases. In this research, we focused on the evaluation of Heterobasidion annosum (HA) extract in colorectal cancer in an in vivo model. The mice with implanted DLD-1 human cancer cells were given HA extract, the referential drug-5-fluorouracil (5FU), or were treated with its combination. Thereafter, tumor volume was measured and apoptotic proteins such as caspase-8, caspase-3, p53, Bcl-2, and survivin were analyzed in mice serum with an ELISA assay. The Ki-67 protein was assessed in tumor cells by immunohistochemical examination. The biggest volumes of tumors were confirmed in the DLD-1 group, while the lowest were observed in the population treated with 5FU and/or HA extract. The assessment of apoptosis showed increased concentrations of caspase 8 and p53 protein after the combined administration of 5FU and HA extract. The levels of survivin and Bcl-2 were decreased in all tested groups compared to the DLD-1 group. Moreover, we observed a positive reaction for Ki-67 protein in all tested groups. Our findings confirm the apoptotic effect of extract given alone or with 5FU. The obtained results are innovative and provide a basis for further research concerning the antitumor activity of the HA extract, especially in the range of its interaction with an anticancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-748-5554
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Katarzyna Godlewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
- Department of Haematology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | | | - Ewa Zapora
- Department of Silviculture and Forest Use, Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
| | - Emilia Sokołowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| |
Collapse
|
4
|
Liu M, Wang K, Haapanen M, Ghimire RP, Kivimäenpää M, Asiegbu FO. Analysis of Transcriptome and Terpene Constituents of Scots Pine Genotypes Inherently Resistant or Susceptible to Heterobasidion annosum. FRONTIERS IN PLANT SCIENCE 2022; 13:947734. [PMID: 35909743 PMCID: PMC9326466 DOI: 10.3389/fpls.2022.947734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Root and stem rot caused by Heterobasidion annosum is a severe problem in boreal Scots pine. Dissecting the features of disease resistance is generally an essential step in resistance breeding in plants and forest trees. In this study, we explored inherent resistance factors of Scots pine against H. annosum. A total of 236 families consisting of 85 full-sib (FS), 35 half-sib population mix (HSpm), and 116 half-sib (HS) families of Scots pine seedlings were inoculated with a H. annosum isolate. We sampled needle tissues before inoculation for terpene measurements and RNA sequencing. Based on the lesion area, the extremes of 12 resistant and 12 susceptible families were selected for further analyses. Necrotic lesions resulting from fungal infection were in a weak to moderate relationship with the plant height. Monoterpenes were the principal terpene compounds observed in Scots pine seedlings. Concentrations of 3-carene were significantly higher in pine genotypes inherently resistant compared with susceptible seedlings. By contrast, susceptible genotypes had significantly higher proportions of α-pinene. Gene ontology analysis of differential expressed transcripts (DETs) revealed that response to biotic factors was enriched in resistant seedlings. Functional characterization of individual DETs revealed that higher expression of transcripts involved in response to abiotic stress was common in susceptible genotypes. This observation was supported by the annotation of hub genes in a key module that was significantly correlated with the lesion trait through weighted gene co-expression network analysis (WGCNA) of 16 HS and HSpm samples. These findings contribute to our understanding of constitutive resistance factors of Scots pine against Heterobasidion root and stem rot diseases.
Collapse
Affiliation(s)
- Mengxia Liu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Matti Haapanen
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Natural Resources Institute Finland (LUKE), Suonenjoki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|