1
|
François M, Lin KS, Rachmadona N. Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: A review. ENVIRONMENTAL RESEARCH 2025; 268:120802. [PMID: 39798663 DOI: 10.1016/j.envres.2025.120802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Managing wastewater and using renewable energy sources are challenges in achieving sustainable development goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas production. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, respectively, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration. Moreover, the removal of H2S from biogas substantially depends on the type of bioreactor used. Furthermore, algal biomass has proven to be a viable option for biogas production and CO2 sequestration, contributing to carbon neutrality. This review also underscores that microalgae are a valuable feedstock, either alone or in combination with other raw materials, for biogas production. In conclusion, this review outlines that maximizing the performance of bioreactors and the efficiency of microalgae used for biogas production and wastewater treatment requires careful control of parameters, such as HRT, solid retention time, pH, and temperature. Additionally, pH and the carbon-to-nitrogen ratio (C:N) are factors influencing CH4 yield during microalgae anaerobic digestion (AD). Further research is needed to evaluate the operational costs of AMBRs used for wastewater treatment and to compare the biogas yield from different types of bioreactors under similar conditions, including the use of the same feedstock.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery Between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
2
|
Figueras J, Benbelkacem H, Dumas C, Buffiere P. Syngas biomethanation: In a transfer limited process, is CO inhibition an issue? WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:36-42. [PMID: 36931067 DOI: 10.1016/j.wasman.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Syngas biomethanation is a promising technology in the process chain converting wastes to methane. However, gas-liquid mass transfer is a limiting factor of the biomethanation process. To reach high methane productivity, increasing the pressure is an interesting strategy to improve mass transfer. However, the CO content in the syngas raises concerns about a potential inhibition of the microorganisms. Therefore, the aim of the research was to assess the ability to work at high CO partial pressures. In this regard, a pressurized continuous stirred column with a working volume of 10L was implemented and a consortium adapted for syngas-biomethanation for 22 months was submitted to 100% CO and increasing pressure. No inhibition phenomenon was observed for logarithmic PCO as high as 1.8 bar (inlet pressure 5.0 bar), which was the first time that such a high CO partial pressure was tested in continuous mode. Mass transfer limitations allowed for the carboxydotrophic microorganisms to consume CO faster than it was transferred, allowing for the dissolved CO concentration to remain under inhibitory concentrations. These results question the habitual consensus that CO inhibition is a limiting factor of syngas biomethanation.
Collapse
Affiliation(s)
- J Figueras
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France; ENOSIS, 31100 Toulouse, France
| | - H Benbelkacem
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - C Dumas
- TBI, University of Toulouse, INSA, INRAE, CNRS, Toulouse, France
| | - P Buffiere
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France.
| |
Collapse
|
3
|
Paniagua S, Lebrero R, Muñoz R. Syngas biomethanation: Current state and future perspectives. BIORESOURCE TECHNOLOGY 2022; 358:127436. [PMID: 35680093 DOI: 10.1016/j.biortech.2022.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In regions highly dependent on fossil fuels imports, biomethane represents a promising biofuel for the transition to a bio-based circular economy. While biomethane is typically produced via anaerobic digestion and upgrading, biomethanation of the synthesis gas (syngas) derived from the gasification of recalcitrant solid waste has emerged as a promising alternative. This work presents a comprehensive and in-depth analysis of the state-of-the-art and most recent advances in the field, compiling the potential of this technology along with the bottlenecks requiring further research. The key design and operational parameters governing syngas production and biomethanation (e.g. organic feedstock, gasifier design, microbiology, bioreactor configuration, etc.) are critically analysed.
Collapse
Affiliation(s)
- Sergio Paniagua
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
5
|
Abstract
Climate neutral and sustainable energy sources will play a key role in future energy production. Biomethanation by gas to gas conversion of flue gases is one option with regard to renewable energy production. Here, we performed the conversion of synthetic carbon monoxide (CO)-containing flue gases to methane (CH4) by artificial hyperthermophilic archaeal co-cultures, consisting of Thermococcus onnurineus and Methanocaldococcus jannaschii, Methanocaldococcus vulcanius, or Methanocaldococcus villosus. Experiments using both chemically defined and complex media were performed in closed batch setups. Up to 10 mol% CH4 was produced by converting pure CO or synthetic CO-containing industrial waste gases at a high rate using a co-culture of T. onnurineus and M. villosus. These findings are a proof of principle and advance the fields of Archaea Biotechnology, artificial microbial ecosystem design and engineering, industrial waste-gas recycling, and biomethanation.
Collapse
|
6
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
7
|
Figueras J, Benbelkacem H, Dumas C, Buffiere P. "Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column". BIORESOURCE TECHNOLOGY 2021; 338:125548. [PMID: 34284292 DOI: 10.1016/j.biortech.2021.125548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In a circular economy approach, heterogeneous wastes can be upgraded to energy in the form of syngas via pyrogasification, and then to methane via biomethanation. Working at high pressure is a promising approach to intensify the process and to reduce gas-liquid transfer limitations. However, raising the pressure could lead to reaching the CO inhibition threshold of the microorganisms involved in syngas-biomethanation. To investigate the impact on pressure on the process, a 10L continuous stirred tank reactor working at 4 bars and 55 °C was implemented. Syngas (40% CO, 40% H2, 20% CO2) biomethanation was performed successfully and methane productivity as high as 6.8 mmolCH4/Lreactor/h with almost full conversion of CO (97%) and H2 (98%) was achieved. CO inhibition was investigated and carboxydotrophs appeared less resistant to high CO exposition than methanogens.
Collapse
Affiliation(s)
- J Figueras
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - H Benbelkacem
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - C Dumas
- TBI, University of Toulouse, INSA, INRAE, CNRS, Toulouse, France
| | - P Buffiere
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France.
| |
Collapse
|
8
|
Awasthi MK, Sarsaiya S, Wainaina S, Rajendran K, Awasthi SK, Liu T, Duan Y, Jain A, Sindhu R, Binod P, Pandey A, Zhang Z, Taherzadeh MJ. Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110837. [DOI: 10.1016/j.rser.2021.110837] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
9
|
Pratofiorito G, Hackbarth M, Mandel C, Madlanga S, West S, Horn H, Hille-Reichel A. A membrane biofilm reactor for hydrogenotrophic methanation. BIORESOURCE TECHNOLOGY 2021; 321:124444. [PMID: 33285505 DOI: 10.1016/j.biortech.2020.124444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Biomethanation of CO2 has been proven to be a feasible way to produce methane with the employment of H2 as electron source. Subject of the present study is a custom-made membrane biofilm reactor for hydrogenotrophic methanation by archaeal biofilms cultivated on membrane surfaces. Reactor layout was adapted to allow for in situ biofilm analysis via optical coherence tomography. At a feeding ratio of H2/CO2 of 3.6, and despite the low membrane surface to reactor volume ratio of 57.9 m2 m-3, the maximum methane production per reactor volume reached up to 1.17 Nm3 m-3 d-1 at a methane content of the produced gas above 97% (v/v). These results demonstrate that the concept of membrane bound biofilms enables improved mass transfer by delivering substrate gases directly to the biofilm, thus, rendering the bottleneck of low solubility of hydrogen in water less drastic.
Collapse
Affiliation(s)
- Giorgio Pratofiorito
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Max Hackbarth
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; DVGW Research Centre at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT), Water Chemistry, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Carmen Mandel
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Siyavuya Madlanga
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; DVGW Research Centre at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT), Water Chemistry, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Stephanie West
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Harald Horn
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; DVGW Research Centre at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT), Water Chemistry, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Andrea Hille-Reichel
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| |
Collapse
|
10
|
Li C, Zhu X, Angelidaki I. Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. BIORESOURCE TECHNOLOGY 2020; 314:123739. [PMID: 32615449 DOI: 10.1016/j.biortech.2020.123739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Syngas biomethanation is an attractive process for extending application of gasification products. In the present study, anaerobic sludges from three methanogenic reactors feeding cattle manure (CS), sewage sludge (SS) and gaseous H2/CO2 (GS) were used to investigate the effect of microbial consortia composition on syngas biomethanation. The results showed that CS presented the highest CO consumption rate due to its highest relative abundance of CO consuming bacteria. The CO was mainly converted to acetate, and syntrophic acetate oxidization (SAO) bacteria converted acetate to H2/CO2 for hydrogenotrophic methanogenesis in CS and SS. However, acetate was accumulated in GS for lacking acetoclastic methanogens and SAO bacteria, leading to lower biomethanation efficiency. Additionally, adding stoichiometric H2 could convert CO and CO2 to nearly pure methane, while, the CO consumption rate declined in H2 added systems. The results present novel insights into microbial consortia on CO conversion and syngas biomethanation.
Collapse
Affiliation(s)
- Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
11
|
Giwa AS, Ali N, Vakili M, Guo X, Liu D, Wang K. Opportunities for holistic waste stream valorization from food waste treatment facilities: a review. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Difficult-to-biodegrade fractions (DBFs) generated from the biological treatment of food waste (FW) account for approximately 30% of the actual waste. These wastes are difficult to degrade or are considered indigestible residues of the aerobic and anaerobic fermentation treatment of FW treatment facilities. The currently applied disposal routes for DBFs exert environmental pressure and underutilize waste as resources. Therefore, these challenges must be overcome. An innovative strategy for the enhancement of the energy value and beneficial products from FW and the associated DBFs is proposed in this review. We propose conceptual future optimization routes for FW and DBFs via three types of technology integration. Pyrolysis techniques thoroughly treat DBFs to produce various value-added bio-energy products, such as pyrogenic bio-char, syngas, and bio-oil. Anaerobic digestion treats FW while utilizing pyrolysis products for robust performance enhancement and bio-methane upgrade. This holistic route offers conceptual information and proper direction as crucial knowledge for real application to harness the inherent resources of waste streams generated from FW treatment facilities.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
- Key Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Mohammadtaghi Vakili
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
| | - Xiaogang Guo
- College of Chemistry and Chemical Engineering, Yangtze Normal University , Chongqing 408003 , China
| | - Dongsheng Liu
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
12
|
Yasin M, Jang N, Lee M, Kang H, Aslam M, Bazmi AA, Chang IS. Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Floating Membrane Bioreactors with High Gas Hold-Up for Syngas-to-Biomethane Conversion. ENERGIES 2019. [DOI: 10.3390/en12061046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The low gas-to-liquid mass transfer rate is one of the main challenges in syngas biomethanation. In this work, a new concept of the floating membrane system with high gas hold-up was introduced in order to enhance the mass transfer rate of the process. In addition, the effect of the inoculum-to-syngas ratio was investigated. The experiments were conducted at 55 °C with an anaerobic mixed culture in both batch and continuous modes. According to the results from the continuous experiments, the H2 and CO conversion rates in the floating membrane bioreactor were approximately 38% and 28% higher in comparison to the free (suspended) cell bioreactors. The doubling of the thickness of the membrane bed resulted in an increase of the conversion rates of H2 and CO by approximately 6% and 12%, respectively. The highest H2 and CO consumption rates and CH4 production rate recorded were approximately 22 mmol/(L·d), 50 mmol/(L·d), and 34.41 mmol/(L·d), respectively, obtained at the highest inoculum-to-syngas ratio of 0.2 g/mL. To conclude, the use of the floating membrane system enhanced the syngas biomethanation rates, while a thicker membrane bed resulted in even higher syngas conversion rates. Moreover, the increase of the inoculum-to-syngas ratio of up to 0.2 g/mL favored the syngas conversion.
Collapse
|
14
|
Diender M, Uhl PS, Bitter JH, Stams AJM, Sousa DZ. High Rate Biomethanation of Carbon Monoxide-Rich Gases via a Thermophilic Synthetic Coculture. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:2169-2176. [PMID: 29430341 PMCID: PMC5805405 DOI: 10.1021/acssuschemeng.7b03601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Carbon monoxide-fermenting microorganisms can be used for the production of a wide range of commodity chemicals and fuels from syngas (generated by gasification of, e.g., wastes or biomass) or industrial off-gases (e.g., from steel industry). Microorganisms are normally more resistant to contaminants in the gas (e.g., hydrogen sulfide) than chemical catalysts, less expensive and self-regenerating. However, some carboxydotrophs are sensitive to high concentrations of CO, resulting in low growth rates and productivities. We hypothesize that cultivation of synthetic cocultures can be used to improve overall rates of CO bioconversion. As a case study, a thermophilic microbial coculture, consisting of Carboxydothermus hydrogenoformans and Methanothermobacter thermoautotrophicus was constructed to study the effect of cocultivation on conversion of CO-rich gases to methane. In contrast to the methanogenic monoculture, the coculture was able to efficiently utilize CO or mixtures of H2/CO/CO2 to produce methane at high efficiency and high rates. In CSTR-bioreactors operated in continuous mode, the coculture converted artificial syngas (66.6% H2:33.3% CO) to an outflow gas with a methane content of 72%, approaching the 75% theoretical maximum. CO conversion efficiencies of 93% and volumetric production rates of 4 m3methane/m3liquid/day were achieved. This case shows that microbial cocultivation can result in a significant improvement of gas-fermentation of CO-rich gases.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Philipp S. Uhl
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Johannes H. Bitter
- Bio-based
Chemistry & Technology, Wageningen University
& Research, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Z. Sousa
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
15
|
Mitigation of Volatile Fatty Acid Build-Up by the Use of Soft Carbon Felt Electrodes: Evaluation of Anaerobic Digestion in Acidic Conditions. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Arantes AL, Alves JI, Stams AJM, Alves MM, Sousa DZ. Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor. Microb Biotechnol 2017; 11:639-646. [PMID: 29160026 PMCID: PMC6011948 DOI: 10.1111/1751-7915.12864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/03/2017] [Indexed: 12/04/2022] Open
Abstract
The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low‐biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi‐orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 105 Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO‐converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 105 Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture.
Collapse
Affiliation(s)
- Ana L Arantes
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Joana I Alves
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Alfons J M Stams
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Diana Z Sousa
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|