1
|
Clausen AK, Junne S. Recent advances in yeast and bacteria co-cultivation for bioprocess applications. World J Microbiol Biotechnol 2025; 41:170. [PMID: 40341666 DOI: 10.1007/s11274-025-04385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Yeast and bacteria co-cultures can be found in nature and have multiple advantages that can be exploited, nowadays also in a controlled bioproduction environment. Various types of co-cultivation have been used for food applications such as production of flavor compounds in dairy products and alcoholic beverages. Co-cultures can broaden the substrate spectrum for microbial food and feed production, they can increase productivity and efficiency, and the nutritional value. Workflows have been developed from plate to bioreactor scale to increase reproducibility and optimize benefits of individual co-cultivation strategies. Nonetheless, certain limitations need to be overcome for industrial application. Many interactions of microbes, in particular in suspension cultures, are not sufficiently understood or even explored. While more possibilities arose from on-line monitoring of individual populations or even single cells, off-line measurement techniques are still typically applied in order to assess growth and product formation. Promising advances have been achieved, however, by methods for single-cell at-line and on-line analysis in co-cultures which are accounted for to emphasize the current opportunities and challenges in monitoring and controlling co-cultures. This review aims to summarize the recent advances with a particular focus on cultivation procedures and process analysis in bacteria, yeast and bacteria-yeast co-cultures. The implementation of suitable monitoring methods to enable (remote) control and contribute to quality assurance will accelerate the development and optimization of industrial co-culture bioprocesses. This will support transferability and process standardization across world regions adding to the advancement of bioproduction. The applicability of some relevant technology is, however, in its infancy.
Collapse
Affiliation(s)
- Anne Kathrine Clausen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark
| | - Stefan Junne
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark.
| |
Collapse
|
2
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Tian D, Liu Y, Zhang Y, Liu Y, Xia Y, Xu B, Xu J, Yomo T. Implementation of Fluorescent-Protein-Based Quantification Analysis in L-Form Bacteria. Bioengineering (Basel) 2024; 11:81. [PMID: 38247958 PMCID: PMC10813599 DOI: 10.3390/bioengineering11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-wall-less (L-form) bacteria exhibit morphological complexity and heterogeneity, complicating quantitative analysis of them under internal and external stimuli. Stable and efficient labeling is needed for the fluorescence-based quantitative cell analysis of L-forms during growth and proliferation. Here, we evaluated the expression of multiple fluorescent proteins (FPs) under different promoters in the Bacillus subtilis L-form strain LR2 using confocal microscopy and imaging flow cytometry. Among others, Pylb-derived NBP3510 showed a superior performance for inducing several FPs including EGFP and mKO2 in both the wild-type and L-form strains. Moreover, NBP3510 was also active in Escherichia coli and its L-form strain NC-7. Employing these established FP-labeled strains, we demonstrated distinct morphologies in the L-form bacteria in a quantitative manner. Given cell-wall-deficient bacteria are considered protocell and synthetic cell models, the generated cell lines in our work could be valuable for L-form-based research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Sabbe K, D'Haen L, Boon N, Ganigué R. Predicting the performance of chain elongating microbiomes through flow cytometric fingerprinting. WATER RESEARCH 2023; 243:120323. [PMID: 37459796 DOI: 10.1016/j.watres.2023.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023]
Abstract
As part of the circular bio-economy paradigm shift, waste management and valorisation practices have moved away from sanitation and towards the production of added-value compounds. Recently, the development of mixed culture bioprocess for the conversion of waste(water) to platform chemicals, such as medium chain carboxylic acids, has attracted significant interest. Often, the microbiology of these novel bioprocesses is less diverse and more prone to disturbances, which can lead to process failure. This issue can be tackled by implementing an advanced monitoring strategy based on the microbiology of the process. In this study, flow cytometry was used to monitor the microbiology of lactic acid chain elongation for the production of caproic acid, and assess its performance both qualitatively and quantitatively. Two continuous stirred tank reactors for chain elongation were monitored flow cytometrically for over 336 days. Through community typing, four specific community types could be identified and correlated to both a specific functionality and genotypic diversity. Additionally, the machine-learning algorithms trained in this study demonstrated the ability to predict production rates of, amongst others, caproic acid with high accuracy in the present (R² > 0.87) and intermediate accuracy in the near future (R² > 0.63). The identification of specific community types and the development of predictive algorithms form the basis of advanced bioprocess monitoring based on flow cytometry, and have the potential to improve bioprocess control and optimization, leading to better product quality and yields.
Collapse
Affiliation(s)
- Kevin Sabbe
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Liese D'Haen
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
Tian D, Wang C, Liu Y, Zhang Y, Caliari A, Lu H, Xia Y, Xu B, Xu J, Yomo T. Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution. Int J Mol Sci 2023; 24:ijms24043243. [PMID: 36834655 PMCID: PMC9966196 DOI: 10.3390/ijms24043243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Cell morphology is an essential and phenotypic trait that can be easily tracked during adaptation and evolution to environmental changes. Thanks to the rapid development of quantitative analytical techniques for large populations of cells based on their optical properties, morphology can be easily determined and tracked during experimental evolution. Furthermore, the directed evolution of new culturable morphological phenotypes can find use in synthetic biology to refine fermentation processes. It remains unknown whether and how fast we can obtain a stable mutant with distinct morphologies using fluorescence-activated cell sorting (FACS)-directed experimental evolution. Taking advantage of FACS and imaging flow cytometry (IFC), we direct the experimental evolution of the E. coli population undergoing continuous passage of sorted cells with specific optical properties. After ten rounds of sorting and culturing, a lineage with large cells resulting from incomplete closure of the division ring was obtained. Genome sequencing highlighted a stop-gain mutation in amiC, leading to a dysfunctional AmiC division protein. The combination of FACS-based selection with IFC analysis to track the evolution of the bacteria population in real-time holds promise to rapidly select and culture new morphologies and association tendencies with many potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jian Xu
- Correspondence: (J.X.); (T.Y.); Tel.: +86-(21)-62233727 (J.X. & T.Y.)
| | - Tetsuya Yomo
- Correspondence: (J.X.); (T.Y.); Tel.: +86-(21)-62233727 (J.X. & T.Y.)
| |
Collapse
|
6
|
Suissa R, Oved R, Maan H, Hadad U, Gilhar O, Meijler MM, Koren O, Kolodkin-Gal I. Context-dependent differences in the functional responses of Lactobacillaceae strains to fermentable sugars. Front Microbiol 2022; 13:949932. [PMID: 36353463 PMCID: PMC9637956 DOI: 10.3389/fmicb.2022.949932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Lactobacillaceae are Gram-positive rods, facultative anaerobes, and belong to the lactic acid bacteria (LAB) that frequently serve as probiotics. We systematically compared five LAB strains for the effects of different carbohydrates on their free-living and biofilm lifestyles. We found that fermentable sugars triggered an altered carrying capacity with strain specificity during planktonic growth. In addition, heterogeneous response to fermentable sugar was manifested in microbial aggregation (measured by imaging flow cytometry), colony development, and attachment to mucin. The acid production capacities of the strains were compatible and could not account for heterogeneity in their differential carrying capacity in liquid and on a solid medium. Among tested LAB strains, L. paracasei, and L. rhamnosus GG survived self-imposed acid stress while L. acidophilus was extremely sensitive to its own glucose utilization acidic products. The addition of a buffering system during growth on a solid medium significantly improved the survival of most tested probiotic strains during fermentation, but the formation of biofilms and aggregation capacity were responsive to the carbohydrate provided rather than to the acidity. We suggest that the optimal performance of the beneficial microbiota members belonging to Lactobacillaceae varies as a function of the growth model and the dependency on a buffering system.
Collapse
Affiliation(s)
- Ronit Suissa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Rela Oved
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Omri Gilhar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael M. Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Ilana Kolodkin-Gal,
| |
Collapse
|
7
|
Flow cytometric analysis reveals culture condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri. Sci Rep 2021; 11:23567. [PMID: 34876641 PMCID: PMC8651721 DOI: 10.1038/s41598-021-02919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Optimisation of cultivation conditions in the industrial production of probiotics is crucial to reach a high-quality product with retained probiotic functionality. Flow cytometry-based descriptors of bacterial morphology may be used as markers to estimate physiological fitness during cultivation, and can be applied for online monitoring to avoid suboptimal growth. In the current study, the effects of temperature, initial pH and oxygen levels on cell growth and cell size distributions of Limosilactobacillus reuteri DSM 17938 were measured using multivariate flow cytometry. A pleomorphic behaviour was evident from the measurements of light scatter and pulse width distributions. A pattern of high growth yielding smaller cells and less heterogeneous populations could be observed. Analysis of pulse width distributions revealed significant morphological heterogeneities within the bacterial cell population under non-optimal growth conditions, and pointed towards low temperature, high initial pH, and high oxygen levels all being triggers for changes in morphology towards cell chain formation. However, cell size did not correlate to survivability after freeze-thaw or freeze-drying stress, indicating that it is not a key determinant for physical stress tolerance. The fact that L. reuteri morphology varies depending on cultivation conditions suggests that it can be used as marker for estimating physiological fitness and responses to its environment.
Collapse
|
8
|
Zavatti V, Budman H, Legge RL, Tamer M. Evaluation of flow cytometry and chemometric models for monitoring and predicting antigen production at full-scale. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Predicting the Presence and Abundance of Bacterial Taxa in Environmental Communities through Flow Cytometric Fingerprinting. mSystems 2021; 6:e0055121. [PMID: 34546074 PMCID: PMC8547484 DOI: 10.1128/msystems.00551-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microbiome management research and applications rely on temporally resolved measurements of community composition. Current technologies to assess community composition make use of either cultivation or sequencing of genomic material, which can become time-consuming and/or laborious in case high-throughput measurements are required. Here, using data from a shrimp hatchery as an economically relevant case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data to develop a computational workflow that allows the prediction of taxon abundances based on flow cytometry measurements. The first stage of our pipeline consists of a classifier to predict the presence or absence of the taxon of interest, with yielded an average accuracy of 88.13% ± 4.78% across the top 50 operational taxonomic units (OTUs) of our data set. In the second stage, this classifier was combined with a regression model to predict the relative abundances of the taxon of interest, which yielded an average R2 of 0.35 ± 0.24 across the top 50 OTUs of our data set. Application of the models to flow cytometry time series data showed that the generated models can predict the temporal dynamics of a large fraction of the investigated taxa. Using cell sorting, we validated that the model correctly associates taxa to regions in the cytometric fingerprint, where they are detected using 16S rRNA gene amplicon sequencing. Finally, we applied the approach of our pipeline to two other data sets of microbial ecosystems. This pipeline represents an addition to the expanding toolbox for flow cytometry-based monitoring of bacterial communities and complements the current plating- and marker gene-based methods. IMPORTANCE Monitoring of microbial community composition is crucial for both microbiome management research and applications. Existing technologies, such as plating and amplicon sequencing, can become laborious and expensive when high-throughput measurements are required. In recent years, flow cytometry-based measurements of community diversity have been shown to correlate well with those derived from 16S rRNA gene amplicon sequencing in several aquatic ecosystems, suggesting that there is a link between the taxonomic community composition and phenotypic properties as derived through flow cytometry. Here, we further integrated 16S rRNA gene amplicon sequencing and flow cytometry survey data in order to construct models that enable the prediction of both the presence and the abundances of individual bacterial taxa in mixed communities using flow cytometric fingerprinting. The developed pipeline holds great potential to be integrated into routine monitoring schemes and early warning systems for biotechnological applications.
Collapse
|
10
|
Power AL, Barber DG, Groenhof SRM, Wagley S, Liu P, Parker DA, Love J. The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes. Front Cell Infect Microbiol 2021; 11:716592. [PMID: 34368019 PMCID: PMC8335544 DOI: 10.3389/fcimb.2021.716592] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteria modify their morphology in response to various factors including growth stage, nutrient availability, predation, motility and long-term survival strategies. Morphological changes may also be associated with specific physiological phenotypes such as the formation of dormant or persister cells in a “viable but non-culturable” (VBNC) state which frequently display different shapes and size compared to their active counterparts. Such dormancy phenotypes can display various degrees of tolerance to antibiotics and therefore a detailed understanding of these phenotypes is crucial for combatting chronic infections and associated diseases. Cell shape and size are therefore more than simple phenotypic characteristics; they are important physiological properties for understanding bacterial life-strategies and pathologies. However, quantitative studies on the changes to cell morphologies during bacterial growth, persister cell formation and the VBNC state are few and severely constrained by current limitations in the most used investigative techniques of flow cytometry (FC) and light or electron microscopy. In this study, we applied high-throughput Imaging Flow Cytometry (IFC) to characterise and quantify, at single-cell level and over time, the phenotypic heterogeneity and morphological changes in cultured populations of four bacterial species, Bacillus subtilis, Lactiplantibacillus plantarum, Pediococcus acidilactici and Escherichia coli. Morphologies in relation to growth stage and stress responses, cell integrity and metabolic activity were analysed. Additionally, we were able to identify and morphologically classify dormant cell phenotypes such as VBNC cells and monitor the resuscitation of persister cells in Escherichia coli following antibiotic treatment. We therefore demonstrate that IFC, with its high-throughput data collection and image capture capabilities, provides a platform by which a detailed understanding of changes in bacterial phenotypes and their physiological implications may be accurately monitored and quantified, leading to a better understanding of the role of phenotypic heterogeneity in the dynamic microbiome.
Collapse
Affiliation(s)
- Ann L Power
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel G Barber
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sophie R M Groenhof
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ping Liu
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - David A Parker
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - John Love
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Influence of Lactic Acid on Cell Cycle Progressions in Lactobacillus bulgaricus During Batch Culture. Appl Biochem Biotechnol 2020; 193:912-924. [PMID: 33206317 DOI: 10.1007/s12010-020-03459-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023]
Abstract
Lactic acid has been proved to inhibit the proliferation of lactic acid bacteria in the fermentation process. To shed light on the cell cycle alterations in acidic conditions, the cell division of Lactobacillus bulgaricus sp1.1 in batch culture was analyzed directly by implementing of the intracellular fluorescent tracking assay in different pH adjusted by lactic acid. Cell proliferation and cell division were investigated to be negatively controlled by the decrease of pH, and pH 4.1 was the critical condition of downregulating cell division but retains cell culturability. The cell area and cell length in pH 4.1 were examined by using fluorescent labeling, and they reduced to about 29.18-34.89% and 32.67-40% of cells cultured in the unacidified medium, respectively. The DNA replication initiation was undergoing prompted by the low extent of DNA condensation and higher expression of the dnaA gene in this critical pH. The results indicated that the cell cycle progressions of Lactobacillus bulgaricus sp1.1 in acidic conditions were arrested at intracellular biomass accumulation and cell division stage. These findings provide fundamental insight into cell cycle control of the acidic environment in Lactobacillus bulgaricus sp1.1.
Collapse
|