1
|
Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. ENERGIES 2022. [DOI: 10.3390/en15092986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ethanol is a promising biofuel that can replace fossil fuel, mitigate greenhouse gas (GHG) emissions, and represent a renewable building block for biochemical production. Ethanol can be produced from various feedstocks. First-generation ethanol is mainly produced from sugar- and starch-containing feedstocks. For second-generation ethanol, lignocellulosic biomass is used as a feedstock. Typically, ethanol production contains four major steps, including the conversion of feedstock, fermentation, ethanol recovery, and ethanol storage. Each feedstock requires different procedures for its conversion to fermentable sugar. Lignocellulosic biomass requires extra pretreatment compared to sugar and starch feedstocks to disrupt the structure and improve enzymatic hydrolysis efficiency. Many pretreatment methods are available such as physical, chemical, physicochemical, and biological methods. However, the greatest concern regarding the pretreatment process is inhibitor formation, which might retard enzymatic hydrolysis and fermentation. The main inhibitors are furan derivatives, aromatic compounds, and organic acids. Actions to minimize the effects of inhibitors, detoxification, changing fermentation strategies, and metabolic engineering can subsequently be conducted. In addition to the inhibitors from pretreatment, chemicals used during the pretreatment and fermentation of byproducts may remain in the final product if they are not removed by ethanol distillation and dehydration. Maintaining the quality of ethanol during storage is another concerning issue. Initial impurities of ethanol being stored and its nature, including hygroscopic, high oxygen and carbon dioxide solubility, influence chemical reactions during the storage period and change ethanol’s characteristics (e.g., water content, ethanol content, acidity, pH, and electrical conductivity). During ethanol storage periods, nitrogen blanketing and corrosion inhibitors can be applied to reduce the quality degradation rate, the selection of which depends on several factors, such as cost and storage duration. This review article sheds light on the techniques of control used in ethanol fuel production, and also includes specific guidelines to control ethanol quality during production and the storage period in order to preserve ethanol production from first-generation to second-generation feedstock. Finally, the understanding of impurity/inhibitor formation and controlled strategies is crucial. These need to be considered when driving higher ethanol blending mandates in the short term, utilizing ethanol as a renewable building block for chemicals, or adopting ethanol as a hydrogen carrier for the long-term future, as has been recommended.
Collapse
|
2
|
Abstract
Hydrogen (H2) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein, we explored and optimized the main variables that affect this power production. The process includes biomass fermentation, bioethanol purification, H2 production via ESR, syngas cleaning by a CO-removal reactor, and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables, the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production, process efficiency, and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production, it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17%, when ESR temperature is 700 °C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration, it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2-economy.
Collapse
|