1
|
Li XP, Shen WH, Wang JW, Zheng LP. Production of fungal hypocrellin photosensitizers: Exploiting bambusicolous fungi and elicitation strategies in mycelium cultures. Mycology 2024; 16:593-616. [PMID: 40415904 PMCID: PMC12096664 DOI: 10.1080/21501203.2024.2430726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 05/27/2025] Open
Abstract
Hypocrellins, a group of naturally occurring perylenequinone pigments produced by Shiraia bambusicola, are notable for their potential use in photodynamic therapy (PDT) for treating cancers and viruses. Traditionally, hypocrellins have been extracted from the fruiting bodies of S. bambusicola, a parasitic fungus on bamboo. However, the yield from wild Shiraia fruiting bodies is often insufficient, prompting a shift towards seeking other fungi with higher yields of hypocrellins as alternative sources. This review comprehensively examines the current research on the isolation, identification, and bioactivity of fungal perylenequinones from Shiraia isolates from ascostromata or fruiting bodies, Shiraia-like endophytes, and other endophytes from bamboos. Additionally, the review discusses the culture methods and conditions for solid-state and submerged fermentation of hypocrellin-producing fungi, including medium components, culture conditions, and optimisation of fermentation factors, as mycelium cultures have emerged as a promising alternative for the production of hypocrellins. Furthermore, novel elicitation strategies are presented to address the bottleneck of lower production of hypocrellins in mycelium cultures, focusing on the preparation, characterisation, and application of biotic and abiotic elicitors. This review aims to facilitate further exploration and utilisation of fungal resources and elicitation strategies for enhanced production of hypocrellins in mycelium cultures.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Gold Mantis School of Architecture, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Bao Z, Xie Y, Xu C, Zhang Z, Zhu D. Biotechnological production and potential applications of hypocrellins. Appl Microbiol Biotechnol 2023; 107:6421-6438. [PMID: 37695342 DOI: 10.1007/s00253-023-12727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Hypocrellins (HYPs), a kind of natural perylenequinones (PQs) with an oxidized pentacyclic core, are important natural compounds initially extracted from the stromata of Hypocrella bambusae and Shiraia bambusicola. They have been widely concerned for their use as anti-microbial, anti-cancers, and anti-viral photodynamic therapy agents in recent years. Considering the restrictions of natural stromal resources, submerged fermentation with Shiraia spp. has been viewed as a promising alternative biotechnology for HYP production, and great efforts have been made to improve HYP production over the past decade. This article reviews recent publications about the mycelium fermentation production of HYPs, and their bioactivities and potential applications, and especially summarizes the progresses toward manipulation of fermentation conditions. Also, their chemical structure and analytic methods are outlined. Herein, it is worth mentioning that the gene arrangement in HYP gene cluster is revised; previous unknown genes in HYP and CTB gene clusters with correct function annotation are deciphered; the homologous sequences of HYP, CTB, and elc are systematically aligned, and especially the biosynthetic pathway of HYPs is full-scale proposed. KEY POINTS: • The mycelial fermentation process and metabolic regulation of hypocrellins are reviewed. • The bioactivities and potential applications of hypocrellins are summarized. • The biosynthesis pathway and regulatory mechanisms of hypocrellins are outlined.
Collapse
Affiliation(s)
- Zhuanying Bao
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Chenglong Xu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
3
|
Xu R, Li XP, Zhang X, Shen WH, Min CY, Wang JW. Contrasting regulation of live Bacillus cereus No.1 and its volatiles on Shiraia perylenequinone production. Microb Cell Fact 2022; 21:172. [PMID: 35999640 PMCID: PMC9396862 DOI: 10.1186/s12934-022-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungal perylenequinones (PQs) are a class of photoactivated polyketide mycotoxins produced by plant-associated fungi. Hypocrellins, the effective anticancer photodynamic therapy (PDT) agents are main bioactive PQs isolated from a bambusicolous Shiraia fruiting bodies. We found previously that bacterial communities inhabiting fungal fruiting bodies are diverse, but with unknown functions. Bacillus is the most dominant genus inside Shiraia fruiting body. To understand the regulation role of the dominant Bacillus isolates on host fungus, we continued our work on co-culture of the dominant bacterium B. cereus No.1 with host fungus Shiraia sp. S9 to elucidate bacterial regulation on fungal hypocrellin production. RESULTS Results from "donut" plate tests indicated that the bacterial culture could promote significantly fungal PQ production including hypocrellin A (HA), HC and elsinochrome A-C through bacterial volatiles. After analysis by gas chromatograph/mass spectrometer and confirmation with commercial pure compounds, the volatiles produced by the bacterium were characterized. The eliciting roles of bacterial volatile organic compounds (VOCs) on HA production via transcriptional regulation of host Shiraia fungus were confirmed. In the established submerged bacterial volatile co-culture, bacterial volatiles could not only promote HA production in the mycelium culture, but also facilitate the release of HA into the medium. The total production of HA was reached to 225.9 mg/L, about 1.87 times that of the fungal mono-culture. In contrast, the live bacterium suppressed markedly fungal PQ production in both confrontation plates and mycelium cultures by direct contact. The live bacterium not only down-regulated the transcript levels of HA biosynthetic genes, but also degraded extracellular HA quickly to its reductive product. CONCLUSION Our results indicated that bacterial volatile release could be a long-distance signal to elicit fungal PQ production. Biodegradation and inhibition by direct contact on fungal PQs were induced by the dominate Bacillus to protect themselves in the fruiting bodies. This is the first report on the regulation of Bacillus volatiles on fungal PQ production. These findings could be helpful for both understanding the intimate fungal-bacterial interactions in a fruiting body and establishing novel cultures for the enhanced production of bioactive PQs.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chun Yan Min
- Suzhou Institute for Food and Drug Control, Suzhou, 215104, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Huang Z, Zhang F, Tang Y, Wen Y, Wu Z, Fang Z, Tian X. Rapid Degradation of Rhodamine B through Visible-Photocatalytic Advanced Oxidation Using Self-Degradable Natural Perylene Quinone Derivatives-Hypocrellins. Bioengineering (Basel) 2022; 9:bioengineering9070307. [PMID: 35877358 PMCID: PMC9312347 DOI: 10.3390/bioengineering9070307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
Hypocrellins (HYPs) are natural perylene quinone derivatives from Ascomycota fungi. Based on the excellent photosensitization properties of HYPs, this work proposed a photocatalytic advanced oxidation process (PAOP) that uses HYPs to degrade rhodamine B (RhB) as a model organic pollutant. A synergistic activity of HYPs and H2O2 (0.18 mM of HYPs, 0.33% w/v of H2O2) was suggested, resulting in a yield of 82.4% for RhB degradation after 60 min under visible light irradiation at 470−475 nm. The principle of pseudo-first-order kinetics was used to describe the decomposition reaction with a calculated constant (k) of 0.02899 min−1 (R2 = 0.983). Light-induced self-degradation of HYPs could be activated under alkaline (pH > 7) conditions, promising HYPs as an advanced property to alleviate the current dilemma of secondary pollution by synthetic photocatalysts in the remediation of emerging organic pollutants.
Collapse
Affiliation(s)
- Zhixian Huang
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China; (Z.H.); (Y.T.); (Y.W.); (Z.W.)
- Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, 8 Fushan Road, Fushan Industrial Park, Zhuhai 519100, China
| | - Fan Zhang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650204, China;
| | - Yanbo Tang
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China; (Z.H.); (Y.T.); (Y.W.); (Z.W.)
- Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, 8 Fushan Road, Fushan Industrial Park, Zhuhai 519100, China
| | - Yongdi Wen
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China; (Z.H.); (Y.T.); (Y.W.); (Z.W.)
| | - Zhenqiang Wu
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China; (Z.H.); (Y.T.); (Y.W.); (Z.W.)
| | - Zhen Fang
- Biomass Group, Faculty of Engineering, Nanjing Agricultural University, Nanjing 210031, China
- Correspondence: (Z.F.); (X.T.)
| | - Xiaofei Tian
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China; (Z.H.); (Y.T.); (Y.W.); (Z.W.)
- Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, 8 Fushan Road, Fushan Industrial Park, Zhuhai 519100, China
- Correspondence: (Z.F.); (X.T.)
| |
Collapse
|