1
|
Chen H, Tian B, Wang R, Pan Z, Gao D, Li H. Uracil walking primer PCR: An accurate and efficient genome-walking tool. J Genet Eng Biotechnol 2025; 23:100478. [PMID: 40390480 PMCID: PMC11957515 DOI: 10.1016/j.jgeb.2025.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 05/21/2025]
Abstract
Genome walking PCR has been extensively used to acquire unknown genomic regions bordering known DNAs. However, non-target amplification challenges the efficacy of existing genome-walking PCRs. Herein, we conceived a new genome-walking method termed Uracil walking Primer PCR (UP-PCR). The UP-PCR features introducing an uracil base at the penultimate position of arbitrary walking primer (AWP) 3' end. A UP-PCR set comprises three nested amplification steps, which are performed by an AWP sequentially coupling a set of three nested site-specific primers, respectively. Prior to secondary UP-PCR, primary UP-PCR product is processed with uracil DNA glycosylase to destroy the carried AWP. As a result, only target primary product is exponentially amplified in the next UP-PCR(s), as it is the only product with binding sites for the both primers. The performance of UP-PCR has been validated by walking three selected genes. The walking experiments showed that each secondary or tertiary UP-PCR generated one to two amplicon ranging in size from 0.2 to 5.0 kb, while with a negligible non-target background; and the amplicons of the secondary UP-PCRs were all correct, indicating that tertiary UP-PCR is generally unnecessary. These findings suggested that UP-PCR has a satisfactory walking ability, specificity, and speed. Collectively, the proposed UP-PCR is a potential candidate method for genome walking.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Rongrong Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Dandan Gao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China.
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Wu H, Pan H, Li H. Protocol to Retrieve Unknown Flanking DNA Using Fork PCR for Genome Walking. Bio Protoc 2025; 15:e5161. [PMID: 39872713 PMCID: PMC11769745 DOI: 10.21769/bioprotoc.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
PCR-based genome walking is one of the prevalent techniques implemented to acquire unknown flanking genomic DNAs. The worth of genome walking includes but is not limited to cloning full-length genes, mining new genes, and discovering regulatory regions of genes. Therefore, this technique has advanced molecular biology and related fields. However, the PCR amplification specificity of this technique needs to be further improved. Here, a practical protocol based on fork PCR is proposed for genome walking. This PCR uses a fork primer set of three arbitrary primers to execute walking amplification task, where the primary fork primer mediates walking by partially annealing to an unknown flank, and the fork-like structure formed between the three primers participates in inhibiting non-target amplification. In primary fork PCR, the low-annealing temperature (25 °C) cycle allows the primary fork primer to anneal to many sites of the genome, synthesizing a cluster of single-stranded DNAs; the subsequent 65 °C cycle processes the target single-strand into double-strand via the site-specific primer; then, the remaining 65 °C cycles selectively enrich this target DNA. However, any non-target single-stranded DNA formed in the 25 °C cycle cannot be further processed in the following 65 °C cycles because it lacks an exact binding site for any primer. Secondary, or even tertiary nested fork PCR further selectively enriches the target DNA. The practicability of fork PCR was validated by walking three genes in Levilactobacillus brevis CD0817 and one gene in Oryza sativa. The results indicated that the proposed protocol can serve as a supplement to the existing genome walking protocols. Key features • This protocol builds upon the method developed by Pan et al. [1], which is applicable to genome-walking for any species. • The developed protocol is a random priming PCR-based genome-walking scheme. • Two rounds of nested fork PCR amplifications suffice to release a positive walking result.
Collapse
Affiliation(s)
- Hongjing Wu
- Nanchang University College of Science and Technology, Nanchang, China
| | - Hao Pan
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Wang L, Jia M, Gao D, Li H. Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817. Bioprocess Biosyst Eng 2024; 47:2101-2110. [PMID: 39269502 DOI: 10.1007/s00449-024-03088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (L-glutamic acid or L-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by Levilactobacillus brevis CD0817. This strategy features a mixture of neutral monosodium L-glutamate plus acidic L-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved L-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of Levilactobacillus brevis CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery L-glutamic acid (750 g/L), monosodium L-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO4·H2O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0-4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Dandan Gao
- Biomedical Research Center, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
4
|
Guo X, Zhu Y, Pan Z, Pan H, Li H. Single primer site-specific nested PCR for accurate and rapid genome-walking. J Microbiol Methods 2024; 220:106926. [PMID: 38555034 DOI: 10.1016/j.mimet.2024.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Genome-walking is a molecular tool used to unveil uncharacterized DNA regions flanking a known DNA, which has been widely used in bioscience and related areas. This study developed a reliable and efficient PCR-based genome-walking approach, named as single primer site-specific nested PCR (SPN-PCR). A SPN-PCR set sequentially consists of three single-primer nested PCR amplifications. The primary relaxed thermal cycle promotes outmost nested site-specific primer (NSSP) to partially combine with numerous places on DNA template, synthesizing many single-stranded DNAs (ssDNA). Among them, the target ssDNA is exponentially amplified in the subsequent stringent cycles, as its 3' part possesses the outmost NSSP complement; but a non-target ssDNA cannot be amplified, because it does not possess such a complement. Stringent secondary and tertiary PCRs also exclusively enrich this target DNA. Finally, the target DNA product becomes predominant. The feasibility of SPN-PCR was validated by genome-walking several selected genes from two divergent species.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Yisong Zhu
- Hangzhou Xiaoshan Agricultural Development Co., Ltd., Hangzhou 311200, PR China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Hao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
5
|
Li H, Lin Z, Guo X, Pan Z, Pan H, Wang D. Primer extension refractory PCR: an efficient and reliable genome walking method. Mol Genet Genomics 2024; 299:27. [PMID: 38466442 DOI: 10.1007/s00438-024-02126-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3' parts of the secondary and tertiary primers. The 5' parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5' part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the hyg gene in rice and the gadR gene in Levilactobacillus brevis CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Boya Bio-Pharmaceutical Group Co., Ltd, High-Tech Industrial Development Zone, Fuzhou, 344100, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Dongying Wang
- Physical Education Department, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
6
|
Wu Y, Li Y, Zhang Y, Liu Y, Li J, Du G, Lv X, Liu L. Efficient Protein Expression and Biosynthetic Gene Cluster Regulation in Bacillus subtilis Driven by a T7-BOOST System. ACS Synth Biol 2023; 12:3328-3339. [PMID: 37885173 DOI: 10.1021/acssynbio.3c00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacillus subtilis is a generally recognized as safe microorganism that is widely used for protein expression and chemical production, but has a limited number of genetic regulatory components compared with the Gram-negative model microorganism Escherichia coli. In this study, a two-module plug-and-play T7-based optimized output strategy for transcription (T7-BOOST) systems with low leakage expression and a wide dynamic range was constructed based on the inducible promoters Phy-spank and PxylA. The first T7 RNA polymerase-driven module was seamlessly integrated into the genome based on the CRISPR/Cpf1 system, while the second expression control module was introduced into low, medium, and high copy plasmids for characterization. As a proof of concept, the T7-BOOST systems were successfully employed for whole-cell catalysis production of γ-aminobutyric acid (109.8 g/L with a 98.0% conversion rate), expression of human αS1 casein and human lactoferrin, and regulation of exogenous lycopene biosynthetic gene cluster and endogenous riboflavin biosynthetic gene cluster. Overall, the T7-BOOST system serves as a stringent, controllable, and effective tool for regulating gene expression in B. subtilis.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| |
Collapse
|
7
|
Pan H, Guo X, Pan Z, Wang R, Tian B, Li H. Fork PCR: a universal and efficient genome-walking tool. Front Microbiol 2023; 14:1265580. [PMID: 37808312 PMCID: PMC10556450 DOI: 10.3389/fmicb.2023.1265580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
The reported genome-walking methods still suffer from some deficiencies, such as cumbersome experimental steps, short target amplicon, or deep background. Here, a simple and practical fork PCR was proposed for genome-walking. The fork PCR employs a fork primer set of three random oligomers to implement walking task. In primary fork PCR, the low-stringency amplification cycle mediates the random binding of primary fork primer to some places on genome, producing a batch of single-stranded DNAs. In the subsequent high-stringency amplification, the target single-strand is processed into double-strand by the site-specific primer, but a non-target single-stranded DNA cannot be processed by any primer. As a result, only the target DNA can be exponentially amplified in the remaining high-stringency cycles. Secondary/tertiary nested fork PCR(s) further magnifies the amplification difference between the both DNAs by selectively enriching target DNA. The applicability of fork PCR was validated by walking several gene loci. The fork PCR could be a perspective substitution for the existing genome-walking schemes.
Collapse
Affiliation(s)
- Hao Pan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Rongrong Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Yavarzadeh M, Anwar F, Saadi S, Saari N. Production of glycerolamines based conjugated γ-aminobutyric acids using microbial COX and LOX as successor enzymes to GAD. Enzyme Microb Technol 2023; 169:110282. [PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
Collapse
Affiliation(s)
- Marjan Yavarzadeh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine, 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine, 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Li H, Pei J, Wei C, Lin Z, Pan H, Pan Z, Guo X, Yu Z. Sodium-Ion-Free Fermentative Production of GABA with Levilactobacillus brevis CD0817. Metabolites 2023; 13:metabo13050608. [PMID: 37233649 DOI: 10.3390/metabo13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) has positive effects on many physiological processes. Lactic acid bacterial production of GABA is a future trend. This study aimed to produce a sodium-ion-free GABA fermentation process for Levilactobacillus brevis CD0817. In this fermentation, both the seed and fermentation media used L-glutamic acid instead of monosodium L-glutamate as the substrate. We optimized the key factors influencing GABA formation, adopting Erlenmeyer flask fermentation. The optimized values of the key factors of glucose, yeast extract, Tween 80, manganese ion, and fermentation temperature were 10 g/L, 35 g/L, 1.5 g/L, 0.2 mM, and 30 °C, respectively. Based on the optimized data, a sodium-ion-free GABA fermentation process was developed using a 10-L fermenter. During the fermentation, L-glutamic acid powder was continuously dissolved to supply substrate and to provide the acidic environment essential for GABA synthesis. The current bioprocess accumulated GABA at up to 331 ± 8.3 g/L after 48 h. The productivity of GABA was 6.9 g/L/h and the molar conversion rate of the substrate was 98.1%. These findings demonstrate that the proposed method is promising in the fermentative preparation of GABA by lactic acid bacteria.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhou Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Protocol to access unknown flanking DNA sequences using Wristwatch-PCR for genome-walking. STAR Protoc 2023; 4:102037. [PMID: 36853735 PMCID: PMC9871321 DOI: 10.1016/j.xpro.2022.102037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
Here we describe a protocol for wristwatch PCR, an approach based on wristwatch-like structure formed between walking primers to obtain unknown flanks. We specify the criteria for designing wristwatch primers and gene-specific primers. We detail how to set wristwatch primer permutations to obtain personalized walking outcomes and improve walking efficiency. We describe experimental procedures for isolating a DNA of interest using three rounds of nested wristwatch PCR as well as the subsequent steps for DNA purification, cloning, and sequencing. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).1.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, USA
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
11
|
Li H, Wang L, Nie L, Liu X, Fu J. Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA. Metabolites 2023; 13:metabo13020283. [PMID: 36837902 PMCID: PMC9966720 DOI: 10.3390/metabo13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a functional metabolite in various organisms. Herein, a sensitivity intensified ninhydrin-based chromogenic system (SINICS), achieved by ethanol and ethyl acetate, is described for the reliable relative quantitation of GABA. A 2.9 mL SINICS kit comprises 1% ninhydrin, 40% ethanol, 25% ethyl acetate, and 35 μL 0.2 M sodium acetate buffer (pH 5.0). In practice, following the addition of a 0.1 mL sample to the kit, the chromogenic reaction is completed by heating at 70 °C for 30 min. The kit increased the color development sensitivity of L-glutamic acid and GABA, with the detection limits being reduced from 20 mM and 200 mM to 5 mM and 20 mM, respectively. The chromophore was stable for at least 2 h at room temperature, which was sufficient for a routine colorimetric analysis. The absorbance at 570 nm with the deduction of background directly represents the content of amino acid. For a proof-of-concept, the SINICS was adopted to optimize the GABA fermentation process of Levilactobacillus brevis CD0817. The results demonstrated that SINICS is an attractive alternative to the available ninhydrin-based colorimetric methods.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lijuan Nie
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xiaohua Liu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinheng Fu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
12
|
Wei C, Lin Z, Pei J, Pan H, Li H. Semi-Site-Specific Primer PCR: A Simple but Reliable Genome-Walking Tool. Curr Issues Mol Biol 2023; 45:512-523. [PMID: 36661520 PMCID: PMC9857434 DOI: 10.3390/cimb45010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Genome-walking has been frequently applied to molecular biology and related areas. Herein, a simple but reliable genome-walking technique, termed semi-site-specific primer PCR (3SP-PCR), is presented. The key to 3SP-PCR is the use of a semi-site-specific primer in secondary PCR that partially overlaps its corresponding primary site-specific primer. A 3SP-PCR set comprises two rounds of nested amplification reactions. In each round of reaction, any primer is allowed to partially anneal to the DNA template once only in the single relaxed-stringency cycle, creating a pool of single-stranded DNAs. The target single-stranded DNA can be converted into a double-stranded molecule directed by the site-specific primer, and thus can be exponentially amplified by the subsequent high-stringency cycles. The non-target one cannot be converted into a double-strand due to the lack of a perfect binding site to any primer, and thus fails to be amplified. We validated the 3SP-PCR method by using it to probe the unknown DNA regions of rice hygromycin genes and Levilactobacillus brevis CD0817 glutamic acid decarboxylase genes.
Collapse
Affiliation(s)
- Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
13
|
Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking. Curr Issues Mol Biol 2023; 45:501-511. [PMID: 36661519 PMCID: PMC9857710 DOI: 10.3390/cimb45010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5'-end of IWP's 5'-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice.
Collapse
|
14
|
Pei J, Sun T, Wang L, Pan Z, Guo X, Li H. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet 2022; 13:969840. [PMID: 36330444 PMCID: PMC9623105 DOI: 10.3389/fgene.2022.969840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The limitations of the current genome-walking strategies include strong background and cumbersome experimental processes. Herein, we report a genome-walking method, fusion primer-driven racket PCR (FPR-PCR), for the reliable retrieval of unknown flanking DNA sequences. Four sequence-specific primers (SSP1, SSP2, SSP3, and SSP4) were sequentially selected from known DNA (5'→3′) to perform FPR-PCR. SSP3 is the fragment that mediates intra-strand annealing (FISA). The FISA fragment is attached to the 5′ end of SSP1, generating a fusion primer. FPR-PCR comprises two rounds of amplification reactions. The single-fusion primary FPR-PCR begins with the selective synthesis of the target first strand, then allows the primer to partially anneal to some place(s) on the unknown region of this strand, producing the target second strand. Afterward, a new first strand is synthesized using the second strand as the template. The 3′ end of this new first strand undergoes intra-strand annealing to the FISA site, followed by the formation of a racket-like DNA by a loop-back extension. This racket-like DNA is exponentially amplified in the secondary FPR-PCR performed using SSP2 and SSP4. We validated this FPR-PCR method by identifying the unknown flanks of Lactobacillus brevis CD0817 glutamic acid decarboxylase genes and the rice hygromycin gene.
Collapse
Affiliation(s)
- Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
15
|
New Insights into the Application of Lactic Acid Bacterial Strains in Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, lactic acid bacteria, widely used in food fermentation, have been recognized as beneficial components of the human microbiome in which they play an important role [...]
Collapse
|