1
|
Larrañaga A, Bello-Álvarez C, Lizundia E. Cytotoxicity and Inflammatory Effects of Chitin Nanofibrils Isolated from Fungi. Biomacromolecules 2023; 24:5737-5748. [PMID: 37988418 PMCID: PMC10716858 DOI: 10.1021/acs.biomac.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Fungal nanochitin can assist the transition from the linear fossil-based economy to a circular biobased economy given its environmental benefits over conventional crustacean-nanochitin. Its real-world implementation requires carefully assessing its toxicity so that unwanted human health and environmental issues are avoided. Accordingly, the cytotoxicity and inflammatory effects of chitin nanofibrils (ChNFs) from white mushroom is assessed. ChNFs are few nanometers in diameter, with a 75.8% N-acetylation degree, a crystallinity of 59.1%, and present a 44:56 chitin/glucan weight ratio. Studies are conducted for aqueous colloidal ChNF dispersions (0-5 mg·mL-1) and free-standing films having physically entangled ChNFs. Aqueous dispersions of chitin nanocrystals (ChNCs) isolated via hydrochloric acid hydrolysis of α-chitin powder are also evaluated for comparison. Cytotoxicity studies conducted in human fibroblasts (MRC-5 cells) and murine brain microglia (BV-2 cells) reveal a comparatively safer behavior over related biobased nanomaterials. However, a strong inflammatory response was observed when BV-2 cells were cultured in the presence of colloidal ChNFs. These novel cytotoxicity and inflammatory studies shed light on the potential of fungal ChNFs for biomedical applications.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao. University of the
Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Carlos Bello-Álvarez
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao. University of the
Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Erlantz Lizundia
- Life
Cycle Thinking Group, Department of Graphic Design and Engineering
Projects. University of the Basque Country
(UPV/EHU), Plaza Ingeniero
Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, Pl. 3 Parque
Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Biscay, Spain
| |
Collapse
|
2
|
Sofiah AGN, Pasupuleti J, Samykano M, Kadirgama K, Koh SP, Tiong SK, Pandey AK, Yaw CT, Natarajan SK. Harnessing Nature's Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences. Polymers (Basel) 2023; 15:3044. [PMID: 37514434 PMCID: PMC10385464 DOI: 10.3390/polym15143044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Primary material supply is the heart of engineering and sciences. The depletion of natural resources and an increase in the human population by a billion in 13 to 15 years pose a critical concern regarding the sustainability of these materials; therefore, functionalizing renewable materials, such as nanocellulose, by possibly exploiting their properties for various practical applications, has been undertaken worldwide. Nanocellulose has emerged as a dominant green natural material with attractive and tailorable physicochemical properties, is renewable and sustainable, and shows biocompatibility and tunable surface properties. Nanocellulose is derived from cellulose, the most abundant polymer in nature with the remarkable properties of nanomaterials. This article provides a comprehensive overview of the methods used for nanocellulose preparation, structure-property and structure-property correlations, and the application of nanocellulose and its nanocomposite materials. This article differentiates the classification of nanocellulose, provides a brief account of the production methods that have been developed for isolating nanocellulose, highlights a range of unique properties of nanocellulose that have been extracted from different kinds of experiments and studies, and elaborates on nanocellulose potential applications in various areas. The present review is anticipated to provide the readers with the progress and knowledge related to nanocellulose. Pushing the boundaries of nanocellulose further into cutting-edge applications will be of particular interest in the future, especially as cost-effective commercial sources of nanocellulose continue to emerge.
Collapse
Affiliation(s)
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Mahendran Samykano
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Kumaran Kadirgama
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Siaw Paw Koh
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Sieh Kieh Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Adarsh Kumar Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, No. 5, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
- Center for Transdiciplinary Research (CFTR), Saveetha University, Chennai 602105, India
| | - Chong Tak Yaw
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Sendhil Kumar Natarajan
- Solar Energy Laboratory, Department of Mechanical Engineering, National Institute of Technology Puducherry, University of Puducherry, Karaikal 609609, India
| |
Collapse
|
3
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
4
|
Datta B, Spero EF, Martin-Martinez FJ, Ortiz C. Socially-Directed Development of Materials for Structural Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100939. [PMID: 35373398 DOI: 10.1002/adma.202100939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Advancing a socially-directed approach to materials research and development is an imperative to address contemporary challenges and mitigate future detrimental environmental and social impacts. This paper reviews, synergizes, and identifies cross-disciplinary opportunities at the intersection of materials science and engineering with humanistic social sciences fields. Such integrated knowledge and methodologies foster a contextual understanding of materials technologies embedded within, and impacting broader societal systems, thus informing decision making upstream and throughout the entire research and development process toward more socially responsible outcomes. Technological advances in the development of structural color, which arises due to the incoherent and coherent scattering of micro-and nanoscale features and possesses a vast design space, are considered in this context. Specific areas of discussion include material culture, narratives, and visual perception, material waste and use, environmental and social life cycle assessment, and stakeholder and community engagement. A case study of the technical and social implications of bio-based cellulose (as a source for structurally colored products) is provided. Socially-directed research and development of materials for structural color hold significant capacity for improved planetary and societal impact across industries such as aerospace, consumer products, displays and sensors, paints and dyes, and food and agriculture.
Collapse
Affiliation(s)
- Bianca Datta
- MIT Media Lab, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, MA, 02139, USA
| | - Ellan F Spero
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
| | - Francisco J Martin-Martinez
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
- Department of Chemistry, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Christine Ortiz
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
| |
Collapse
|
5
|
Development and Characterization of Highly Stable Silver NanoParticles as Novel Potential Antimicrobial Agents for Wound Healing Hydrogels. Int J Mol Sci 2022; 23:ijms23042161. [PMID: 35216277 PMCID: PMC8877827 DOI: 10.3390/ijms23042161] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Recurrent microbial infections are a major cause of surgical failure and morbidity. Wound healing strategies based on hydrogels have been proposed to provide at once a barrier against pathogen microbial colonization, as well as a favorable environment for tissue repair. Nevertheless, most biocompatible hydrogel materials are more bacteriostatic than antimicrobial materials, and lack specific action against pathogens. Silver-loaded polymeric nanocomposites have efficient and selective activity against pathogenic organisms exploitable for wound healing. However, the loading of metallic nanostructures into hydrogels represents a major challenge due to the low stability of metal colloids in aqueous environments. In this context, the aim of the present study was the development of highly stable silver nanoparticles (AgNPs) as novel potential antimicrobial agents for hyaluronic acids hydrogels. Two candidate stabilizing agents obtained from natural and renewable sources, namely cellulose nanocrystals and ulvan polysaccharide, were exploited to ensure high stability of the silver colloid. Both stabilizing agents possess inherent bioactivity and biocompatibility, as well as the ability to stabilize metal nanostructures thanks to their supramolecular structures. Silver nitrate reduction through sodium borohydride in presence of the selected stabilizing agents was adopted as a model strategy to achieve AgNPs with narrow size distribution. Optimized AgNPs stabilized with the two investigated polysaccharides demonstrated high stability in phosphate buffer saline solution and strong antimicrobial activity. Loading of the developed AgNPs into photocrosslinked methacrylated hyaluronic acid hydrogels was also investigated for the first time as an effective strategy to develop novel antimicrobial wound dressing materials.
Collapse
|
6
|
Engkagul V, Rader C, Pon N, Rowan SJ, Weder C. Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals and a Cationic Polymer. Biomacromolecules 2021; 22:5087-5096. [PMID: 34734702 DOI: 10.1021/acs.biomac.1c01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
On account of their high strength and stiffness and their renewable nature, cellulose nanocrystals (CNCs) are widely used as a reinforcing component in polymer nanocomposites. However, CNCs are prone to aggregation and this limits the attainable reinforcement. Here, we show that nanocomposites with a very high CNC content can be prepared by combining the cationic polymer poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and negatively charged, carboxylated CNCs that are provided as a sodium salt (CNC-COONa). Free-standing films of the composites can be prepared by simple solvent casting from water. The appearance and polarized optical microscopy and electron microscopy images of these films suggest that CNC aggregation is absent, and this is supported by the very pronounced reinforcement observed. The incorporation of 33 wt % CNC-COONa into PMETAC allowed increasing the storage modulus of this already rather stiff, glassy amorphous matrix polymer from 1.5 ± 0.3 to 6.6 ± 0.1 GPa, while the maximum strength increased from 11 to 32 MPa. At this high CNC content, the reinforcement achieved in the PMETAC/CNC-COONa nanocomposite is much more pronounced than that observed for a reference nanocomposite made with unmodified CNCs (CNC-OH).
Collapse
Affiliation(s)
- Visuta Engkagul
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Chris Rader
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nanetta Pon
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Kamtsikakis A, Delepierre G, Weder C. Cellulose nanocrystals as a tunable nanomaterial for pervaporation membranes with asymmetric transport properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of acidic hydrolysis duration on nanocellulose size, morphology, and proper ties was investigated, which opens up a whole new horizon of versatility in poplar applications. This study aimed to examine Spanish poplar wastes as raw material to extract crystalline nanocellulose (CNC), which substantiates the importance of poplar wastes. Wastes were pulped using 1 L of 10% NaOH (wt./wt.) solution, and bleached several times by NaClO2; afterwards, white wastes were subjected to acidic hydrolysis by 60% H2SO4 for either 5, 10, or 15 min. Microcrystalline cellulose (MCC) underwent a similar hydrolysis protocol as poplar as control. TEM, IR, and XRD characterization techniques were performed. Poplar based nanocellulose sized 219 nm length and 69 nm width after 15 min acidic hydrolysis. MCC yielded 122 nm length and 12 nm width crystals after 10 min acidic hydrolysis. Hydrolysis resulted in a drastic change and intense peaks at 3500 and 2900 cm−1 for nanocellulose. Although pre-hydrolysis fiber treatment was not influencial on the crystallinity of poplar, acidic hydrolysis remarkably raised the crystallinity index (CI) by 7–8%. The more hydrolysis duration was prolonged, the size of the resulting crystal (whisker) decreased, and the aspect ratio increased. Hydrolysis was more impactful on MCC than poplar. However, for future work, it seems that longer duration of pulping and bleaching could have significantly removed unwanted components (hemicellulose and lignin), showcased in IR and XRD, and hence smoothened the following hydrolysis.
Collapse
|
9
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
10
|
Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q, Manan S, Xue M, Ullah MW, Bowen H. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol 2021; 9:616555. [PMID: 34026739 PMCID: PMC8139407 DOI: 10.3389/fbioe.2021.616555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Bone serves to maintain the shape of the human body due to its hard and solid nature. A loss or weakening of bone tissues, such as in case of traumatic injury, diseases (e.g., osteosarcoma), or old age, adversely affects the individuals quality of life. Although bone has the innate ability to remodel and regenerate in case of small damage or a crack, a loss of a large volume of bone in case of a traumatic injury requires the restoration of bone function by adopting different biophysical approaches and chemotherapies as well as a surgical reconstruction. Compared to the biophysical and chemotherapeutic approaches, which may cause complications and bear side effects, the surgical reconstruction involves the implantation of external materials such as ceramics, metals, and different other materials as bone substitutes. Compared to the synthetic substitutes, the use of biomaterials could be an ideal choice for bone regeneration owing to their renewability, non-toxicity, and non-immunogenicity. Among the different types of biomaterials, nanocellulose-based materials are receiving tremendous attention in the medical field during recent years, which are used for scaffolding as well as regeneration. Nanocellulose not only serves as the matrix for the deposition of bioceramics, metallic nanoparticles, polymers, and different other materials to develop bone substitutes but also serves as the drug carrier for treating osteosarcomas. This review describes the natural sources and production of nanocellulose and discusses its important properties to justify its suitability in developing scaffolds for bone and cartilage regeneration and serve as the matrix for reinforcement of different materials and as a drug carrier for treating osteosarcomas. It discusses the potential health risks, immunogenicity, and biodegradation of nanocellulose in the human body.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Huanfei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sehrish Manan
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Bowen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Mehanny S, Abu-El Magd EE, Ibrahim M, Farag M, Gil-San-Millan R, Navarro J, El Habbak AEH, El-Kashif E. Extraction and characterization of nanocellulose from three types of palm residues. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 10:526-537. [DOI: 10.1016/j.jmrt.2020.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
13
|
Yahya EB, Jummaat F, Amirul AA, Adnan AS, Olaiya NG, Abdullah CK, Rizal S, Mohamad Haafiz MK, Khalil HPSA. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics (Basel) 2020; 9:E648. [PMID: 32998197 PMCID: PMC7601537 DOI: 10.3390/antibiotics9100648] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
A biopolymer-based aerogel has been developed to become one of the most potentially utilized materials in different biomedical applications. The biopolymer-based aerogel has unique physical, chemical, and mechanical properties and these properties are used in tissue engineering, biosensing, diagnostic, medical implant and drug delivery applications. Biocompatible and non-toxic biopolymers such as chitosan, cellulose and alginates have been used to deliver antibiotics, plants extract, essential oils and metallic nanoparticles. Antibacterial aerogels have been used in superficial and chronic wound healing as dressing sheets. This review critically analyses the utilization of biopolymer-based aerogels in antibacterial delivery. The analysis shows the relationship between their properties and their applications in the wound healing process. Furthermore, highlights of the potentials, challenges and proposition of the application of biopolymer-based aerogels is explored.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - Fauziah Jummaat
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia;
| | - A. A. Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - A. S. Adnan
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - M. K. Mohamad Haafiz
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| |
Collapse
|
14
|
Stoudmann N, Schmutz M, Hirsch C, Nowack B, Som C. Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology 2020; 14:1241-1257. [DOI: 10.1080/17435390.2020.1814440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Natasha Stoudmann
- Technology and Society, Swiss Federal Laboratories for Materials Science and Technology (Empa), St.Gallen, Switzerland
| | - Mélanie Schmutz
- Technology and Society, Swiss Federal Laboratories for Materials Science and Technology (Empa), St.Gallen, Switzerland
| | - Cordula Hirsch
- Particles-Biology Interations, Swiss Federal Laboratories for Materials Science and Technology (Empa), St.Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society, Swiss Federal Laboratories for Materials Science and Technology (Empa), St.Gallen, Switzerland
| | - Claudia Som
- Technology and Society, Swiss Federal Laboratories for Materials Science and Technology (Empa), St.Gallen, Switzerland
| |
Collapse
|
15
|
Ede JD, Ong KJ, Goergen M, Rudie A, Pomeroy-Carter CA, Shatkin JA. Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E337. [PMID: 30832338 PMCID: PMC6474143 DOI: 10.3390/nano9030337] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 01/04/2023]
Abstract
Cellulose nanomaterials (CNs) are emerging advanced materials with many unique properties and growing commercial significance. A life-cycle risk assessment and environmental health and safety roadmap identified potential risks from inhalation of powdered CNs in the workplace as a key gap in our understanding of safety and recommended addressing this data gap to advance the safe and successful commercialization of these materials. Here, we (i) summarize the currently available published literature for its contribution to our current understanding of CN inhalation hazard and (ii) evaluate the quality of the studies for risk assessment purposes using published study evaluation tools for nanomaterials to assess the weight of evidence provided. Our analysis found that the quality of the available studies is generally inadequate for risk assessment purposes but is improving over time. There have been some advances in knowledge about the effects of short-term inhalation exposures of CN. The most recent in vivo studies suggest that short-term exposure to CNs results in transient inflammation, similarly to other poorly soluble, low toxicity dusts such as conventional cellulose, but is markedly different from fibers with known toxicity such as certain types of multiwalled carbon nanotubes or asbestos. However, several data gaps remain, and there is still a lack of understanding of the effects from long-term, low-dose exposures that represent realistic workplace conditions, essential for a quantitative assessment of potential health risk. Therefore, taking precautions when handling dry forms of CNs to avoid dust inhalation exposure is warranted.
Collapse
Affiliation(s)
- James D Ede
- Vireo Advisors, LLC, Boston, MA 02130-4323, USA.
| | | | - Michael Goergen
- P3Nano, U.S. Endowment for Forestry and Communities, Greenville, SC 29601, USA.
| | - Alan Rudie
- Forest Products Laboratory, USDA Forest Service, Madison, WI 53726-2398, USA.
| | | | | |
Collapse
|
16
|
Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Risteen B, Delepierre G, Srinivasarao M, Weder C, Russo P, Reichmanis E, Zoppe J. Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802060. [PMID: 30198146 DOI: 10.1002/smll.201802060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Indexed: 06/08/2023]
Abstract
A thermally "switchable" liquid-crystalline (LC) phase is observed in aqueous suspensions of cellulose nanocrystals (CNCs) featuring patchy grafts of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM). "Patchy" polymer decoration of the CNCs is achieved by preferential attachment of an atom transfer radical polymerization (ATRP) initiator to the ends of the rods and subsequent surface-initiated ATRP. The patchy PNIPAM-grafted CNCs display a higher colloidal stability above the lower critical solution temperature (LCST) of PNIPAM than CNCs decorated with PNIPAM in a brush-like manner. A 10 wt% suspension of the "patchy" PNIPAM-modified CNCs displays birefringence at room temperature, indicating the presence of an LC phase. When heated above the LCST of PNIPAM, the birefringence disappears, indicating the transition to an isotropic phase. This switching is reversible and appears to be driven by the collapse of the PNIPAM chains above the LCST, causing a reduction of the rods' packing density and an increase in translational and rotational freedom. Suspensions of the "brush" PNIPAM-modified CNCs display a different behavior. Heating above the LCST causes phase separation, likely because the chain collapse renders the particles more hydrophobic. The thermal switching observed for the "patchy" PNIPAM-modified CNCs is unprecedented and possibly useful for sensing and smart packaging applications.
Collapse
Affiliation(s)
- Bailey Risteen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Gwendoline Delepierre
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Mohan Srinivasarao
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Paul Russo
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Elsa Reichmanis
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Justin Zoppe
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
18
|
Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, Kramer F, Kondo T, Lindström T, Nietzsche S, Petzold-Welcke K, Rauchfuß F. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. MATERIALS TODAY 2018; 21:720-748. [DOI: 10.1016/j.mattod.2018.02.001] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
|
19
|
Wohlhauser S, Delepierre G, Labet M, Morandi G, Thielemans W, Weder C, Zoppe JO. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00733] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sandra Wohlhauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Gwendoline Delepierre
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Marianne Labet
- Renewable Materials and Nanotechnology Research Group, Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Gaëlle Morandi
- Laboratoire Polymères, Biopolymères, Surfaces, Normandie Université, INSA de Rouen, Avenue de l’Université, 76801 Saint-Étienne-du-Rouvray Cedex, France
| | - Wim Thielemans
- Renewable Materials and Nanotechnology Research Group, Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Justin O. Zoppe
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Perceptions on the Importance of Forest Sector Innovations: Biofuels, Biomaterials, or Niche Products? FORESTS 2018. [DOI: 10.3390/f9050255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Ogonowski M, Edlund U, Gorokhova E, Linde M, Ek K, Liewenborg B, Könnecke O, Navarro JRG, Breitholtz M. Multi-level toxicity assessment of engineered cellulose nanofibrils inDaphnia magna. Nanotoxicology 2018; 12:509-521. [DOI: 10.1080/17435390.2018.1464229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Martin Ogonowski
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Ulrica Edlund
- Fiber and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Margareta Linde
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Karin Ek
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Birgitta Liewenborg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Oda Könnecke
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Julien R. G. Navarro
- Fiber and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Magnus Breitholtz
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Parker RM, Guidetti G, Williams CA, Zhao T, Narkevicius A, Vignolini S, Frka-Petesic B. The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704477. [PMID: 29250832 DOI: 10.1002/adma.201704477] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/18/2017] [Indexed: 05/19/2023]
Abstract
By controlling the interaction of biological building blocks at the nanoscale, natural photonic nanostructures have been optimized to produce intense coloration. Inspired by such biological nanostructures, the possibility to design the visual appearance of a material by guiding the hierarchical self-assembly of its constituent components, ideally using natural materials, is an attractive route for rationally designed, sustainable manufacturing. Within the large variety of biological building blocks, cellulose nanocrystals are one of the most promising biosourced materials, primarily for their abundance, biocompatibility, and ability to readily organize into photonic structures. Here, the mechanisms underlying the formation of iridescent, vividly colored materials from colloidal liquid crystal suspensions of cellulose nanocrystals are reviewed and recent advances in structural control over the hierarchical assembly process are reported as a toolbox for the design of sophisticated optical materials.
Collapse
Affiliation(s)
- Richard M Parker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Giulia Guidetti
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cyan A Williams
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tianheng Zhao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aurimas Narkevicius
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Bruno Frka-Petesic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
23
|
Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J. Current characterization methods for cellulose nanomaterials. Chem Soc Rev 2018; 47:2609-2679. [PMID: 29658545 DOI: 10.1039/c6cs00895j] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.
Collapse
Affiliation(s)
- E Johan Foster
- Department of Materials Science and Engineering, Virginia Tech, 445 Old Turner St, 203 Holden Hall, Blacksburg, 24061, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pyrgiotakis G, Luu W, Zhang Z, Vaze N, DeLoid G, Rubio L, Graham WAC, Bell DC, Bousfield D, Demokritou P. Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. CELLULOSE (LONDON, ENGLAND) 2018. [PMID: 31839698 DOI: 10.1007/s10570-018-1718-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cellulose is one of the most abundant natural polymers, is readily available, biodegradable, and inexpensive. Recently, interest is growing around nanoscale cellulose due to the sustainability of these materials, the novel properties, and the overall low environmental impact. The rapid expansion of nanocellulose uses in various applications makes the study of the toxicological properties of these materials of great importance to public health regulators. However, most of the current toxicological studies are highly conflicting, inconclusive, and contradictory. The major reasons for these discrepancies are the lack of standardized methods to produce industry-relevant reference nanocellulose and relevant characterization that will expand beyond the traditional cellulose characterization for applications. In order to address these issues, industry-relevant synthesis platforms were developed to produce nanocellulose of controlled properties that can be used as reference materials in toxicological studies. Herein, two types of nanocellulose were synthesized, cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) using the friction grinding platform and an acid hydrolysis approach respectively. The nanocellulose structures were characterized extensively regarding their physicochemical properties, including testing for endotoxins and bacteria contamination.
Collapse
Affiliation(s)
- Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Wing Luu
- Department of Chemical and Biological Engineering, University of Maine, Orono ME 04469 USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Nachiket Vaze
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Glen DeLoid
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Laura Rubio
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - W Adam C Graham
- Center for Nanoscale Systems, Harvard University, Cambridge MA 02138
| | - David C Bell
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Center for Nanoscale Systems, Harvard University, Cambridge MA 02138
| | - Douglas Bousfield
- Department of Chemical and Biological Engineering, University of Maine, Orono ME 04469 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| |
Collapse
|
25
|
Shirole A, Nicharat A, Perotto CU, Weder C. Tailoring the Properties of a Shape-Memory Polyurethane via Nanocomposite Formation and Nucleation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01728] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anuja Shirole
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Apiradee Nicharat
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Carlo U. Perotto
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
26
|
Seabra AB, Bernardes JS, Fávaro WJ, Paula AJ, Durán N. Cellulose nanocrystals as carriers in medicine and their toxicities: A review. Carbohydr Polym 2017; 181:514-527. [PMID: 29254002 DOI: 10.1016/j.carbpol.2017.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) are crystalline nanoparticles that present myriad applications. CNCs are produced from a variety of renewable sources, and they can be chemically modified. Although there are promising perspectives for introducing CNCs into pharmaceutical formulations, prior to achieving commercial products the influence of many parameters such as extraction and toxicity of the resulting products must be revealed. Since there is great physicochemical flexibility in the steps of obtaining and conjugating CNCs, there are uncountable and complex outcomes from the interactions of those parameters. We present a discussion that helps to unveil the whole panorama on the use of CNCs as drug delivery systems. The methods of producing CNCs are correlated to the resulting nanotoxicity from the cellular to organism level. This review points to relevant concerns that must be overcome to attain safe use of these nanostructures. We also discuss the patents and commercially available products based on CNCs.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center of Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil.
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Amauri J Paula
- Solid-Biological Interface Group (SolBIN), Department of Physics, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Nelson Durán
- Center of Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil; NanoBioss, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil; Institute of Chemistry, BiolChemLab., Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
27
|
A Review on the toxicology and dietetic role of bacterial cellulose. Toxicol Rep 2017; 4:543-553. [PMID: 29090119 PMCID: PMC5655389 DOI: 10.1016/j.toxrep.2017.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/04/2017] [Accepted: 09/24/2017] [Indexed: 11/22/2022] Open
Abstract
Bacterial cellulose (BC) is a biopolymer synthesized by certain acetic acid bacteria strains. The safety of BC regarding its potential use in food applications is here reviewed. The acute, sub-acute and subchronic oral toxicity assays showed that consumption of BC had no adverse effects in rats. Several studies demonstrated that BC is not genotoxic, did not induce chromosomal aberrations in CHO cells under both non-activating and metabolic activating conditions, is inactive in the in vitro Rat Primary Hepatocyte Unscheduled DNA Synthesis Assay, had no reproductive toxicity in mice and exerted no embryotoxicity and teratogenicity effects in rats. Several studies on the BC in biomedical applications further reinforces its safety: a primary eye and dermal irritation studies in the rabbit showed that BC was non-irritating. The inflammatory reaction to subcutaneously implanted BC has been evaluated in animal models and for different periods of time, demonstrating that BC is biocompatible and does not trigger a harsh inflammatory reaction. Altogether, and considering its longstanding history of human consumption in Asian countries, as well as its utilization in biomedical devices, it may be concluded that BC is safe for applications in food technology.
Collapse
|
28
|
Leng T, Jakubek ZJ, Mazloumi M, Leung ACW, Johnston LJ. Ensemble and Single Particle Fluorescence Characterization of Dye-Labeled Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8002-8011. [PMID: 28718649 DOI: 10.1021/acs.langmuir.7b01717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellulose nanocrystals (CNCs) have been covalently labeled with both fluorescein and rhodamine and studied by a combination of UV-vis absorption spectroscopy and ensemble and single molecule fluorescence spectroscopy. For all samples, the fluorescence anisotropy and lifetimes were consistent with effects expected for covalently bound dye molecules. Low dye loading levels (∼0.1 dye/particle) were estimated for the fluorescein-labeled CNC which coupled with the strong pH dependence make this a less suitable fluorophore for most applications. Rhodamine-labeled CNCs were prepared from both sulfated and carboxylated CNCs and had loading levels that varied from 0.25 to ∼15 dye molecules/CNC. For the sulfated samples, the absorption due to (nonfluorescent) dimeric dye increased with dye loading; in contrast, the carboxylated sample, which had the highest rhodamine content, had a low dimer yield. Single particle fluorescence studies for two of the rhodamine-labeled CNCs demonstrated that individual particles are readily detected by their stepwise blinking/bleaching behavior and by polarization effects. Overall, the results indicate the importance of understanding the effects of loading on dye photophysics to select an optimal dye concentration to maximize sensitivity while minimizing the effect of the dye on the CNC behavior. The results also demonstrate that CNCs with relatively low dye loadings (e.g., ∼1 dye/particle) are readily detectable by fluorescence and should be adequate for use in fluorescence-based biological assays or to probe the distribution of CNCs in composite materials.
Collapse
Affiliation(s)
- Tianyang Leng
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Department of Chemistry, University of Ottawa , Ottawa, ON K1N 6N5, Canada
| | - Zygmunt J Jakubek
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Mahyar Mazloumi
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Alfred C W Leung
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC H4P 2R2, Canada
| | - Linda J Johnston
- Measurement Science and Standards, National Research Council Canada , 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Department of Chemistry, University of Ottawa , Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
29
|
Imato K, Natterodt JC, Sapkota J, Goseki R, Weder C, Takahara A, Otsuka H. Dynamic covalent diarylbibenzofuranone-modified nanocellulose: mechanochromic behaviour and application in self-healing polymer composites. Polym Chem 2017. [DOI: 10.1039/c7py00074j] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface mechanochemistry of nanocelluloses modified with a dynamic covalent mechanophore is investigated, and self-healing composites with the celluloses are developed.
Collapse
Affiliation(s)
- K. Imato
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
- Institute for Materials Chemistry and Engineering
| | - J. C. Natterodt
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | - J. Sapkota
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | - R. Goseki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - C. Weder
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | - A. Takahara
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - H. Otsuka
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| |
Collapse
|
30
|
Endes C, Camarero-Espinosa S, Mueller S, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD. A critical review of the current knowledge regarding the biological impact of nanocellulose. J Nanobiotechnology 2016; 14:78. [PMID: 27903280 PMCID: PMC5131550 DOI: 10.1186/s12951-016-0230-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/18/2016] [Indexed: 01/13/2023] Open
Abstract
Several forms of nanocellulose, notably cellulose nanocrystals and nanofibrillated cellulose, exhibit attractive property matrices and are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer composites, basis for low-density foams, additive in adhesives and paints, as well as a wide variety of food, hygiene, cosmetic, and medical products. Although the commercial exploitation of nanocellulose has already commenced, little is known as to the potential biological impact of nanocellulose, particularly in its raw form. This review provides a comprehensive and critical review of the current state of knowledge of nanocellulose in this format. Overall, the data seems to suggest that when investigated under realistic doses and exposure scenarios, nanocellulose has a limited associated toxic potential, albeit certain forms of nanocellulose can be associated with more hazardous biological behavior due to their specific physical characteristics.
Collapse
Affiliation(s)
- C. Endes
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Cnr College Rd & Cooper Rd, Building 75, Brisbane, QLD 4072 Australia
| | - S. Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Cnr College Rd & Cooper Rd, Building 75, Brisbane, QLD 4072 Australia
| | - S. Mueller
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - E. J. Foster
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department of Materials Science and Engineering, Macromolecules Innovation Institute (MII), Virginia Polytechnic Institute and State University (Virginia Tech), 213 Holden Hall, 445 Old Turner Street, Blacksburg, VA 24061, USA
| | - A. Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - B. Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - C. Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - M. J. D. Clift
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- In Vitro Toxicology Group, Swansea University Medical School, Singleton Park Campus, Swansea, SA2 8PP Wales, UK
| |
Collapse
|
31
|
|