1
|
Vafakish B, Wilson LD. A Highly Sensitive Chitosan-Based SERS Sensor for the Trace Detection of a Model Cationic Dye. Int J Mol Sci 2024; 25:9327. [PMID: 39273279 PMCID: PMC11395516 DOI: 10.3390/ijms25179327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is reported in this study. Grafted chitosan was employed as a matrix support for Ag nanoparticles (NPs) for the surface-enhanced Raman spectroscopy (SERS). Chitosan (CS) was decorated with thiol and carboxylic acid groups by incorporating S-acetyl mercaptosuccinic anhydride (SAMSA) to yield CS-SAMSA. Then, Ag NPs were immobilized onto the CS-SAMSA (Ag@CS-SAMSA) and characterized by spectral methods (IR, Raman, NIR, solid state 13C NMR with CP-MAS, XPS, and TEM). Ag@CS-SAMSA was evaluated as a substrate for SERS, where methylene blue (MB) was used as a model dye adsorbate. The Ag@CS-SAMSA sensor demonstrated a high sensitivity (with an enhancement factor ca. 108) and reusability over three cycles, with acceptable reproducibility and storage stability. The Raman imaging revealed a large SERS effect, whereas the MB detection varied from 1-100 μM. The limits of detection (LOD) and quantitation (LOQ) of the biocomposite sensor were characterized, revealing properties that rival current state-of-the-art systems. The dye adsorption profiles were studied via SERS by fitting the isotherm results with the Hill model to yield the ΔG°ads for the adsorption process. This research demonstrates a sustainable dual-function biocomposite with tailored adsorption and sensing properties suitable for potential utility in advanced water treatment technology and environmental monitoring applications.
Collapse
Affiliation(s)
- Bahareh Vafakish
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
El-Aassar MR, Alezbaway AK, Althobaiti IO, El-Sayed MY, Abu Salem HS, Hassan HMA, Alolaimi RF, El Agammy EF, Mohy-Eldin MS, Mohamed FM. Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of Arsenic (V) from an Aqueous Solution. Molecules 2022; 27:molecules27217635. [PMID: 36364462 PMCID: PMC9659286 DOI: 10.3390/molecules27217635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The arsenic (As) pollution of water has been eliminated via intensive scientific efforts, with the purpose of giving safe drinking water to millions of people across the world. In this study, the adsorption of As(V) from a synthetic aqueous solution was verified using a Bentonite-Anthracite@Zetag (BT-An@Zetag) composite. The SEM, FT-IR, XRD, DSC, TGA, and SBET techniques were used to characterize the (BT-An@Zetag) composite. The adsorption of As(V) was explored using batch adsorption under varied operating scenarios. Five kinetic modelswere used to investigate kinetic data, whereas three isotherms had been used to fit empirical equilibrium data. According to the findings, the adsorption mechanism of As(V) was best described by the Freundlich isotherm with a maximum monolayer coverage of 38.6 mg/g showing pseudo-second-order mode. The estimated enthalpy (H°) indicates that the adsorption process is both chemical and endothermic.The calculated free energy (G°) indicates that the reaction is nonspontaneous. After four sequential adsorption cycles, the produced BT-An@Zetag composite demonstrated good reusability and a greater adsorption affinity for As(V) ions. Overall, the BT-An@Zetag composite is suited for removing arsenic from wastewater using adsorption as a cost-effective and efficient technique.
Collapse
Affiliation(s)
- Mohamed R. El-Aassar
- Chemistry Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (M.R.E.-A.); (M.S.M.-E.); (F.M.M.)
| | - Ahmed K. Alezbaway
- Geology Department, Faculty of Science, Helwan University, Ain Helwan 11795, Egypt
| | - Ibrahim O. Althobaiti
- Chemistry Department, College of Science and Arts, Jouf University, Al-Nasfah 77217, Saudi Arabia
| | - Mohamed Y. El-Sayed
- Chemistry Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hend S. Abu Salem
- Geology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hassan M. A. Hassan
- Chemistry Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rawan F. Alolaimi
- Chemistry Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Emam F. El Agammy
- Physics Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohamed S. Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab City 21934, Egypt
- Correspondence: (M.R.E.-A.); (M.S.M.-E.); (F.M.M.)
| | - Fathy M. Mohamed
- Hydrogeology and Environment Department, Faculty of Earth Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
- Correspondence: (M.R.E.-A.); (M.S.M.-E.); (F.M.M.)
| |
Collapse
|
3
|
An Overview of the Design of Chitosan-Based Fiber Composite Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5060160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chitosan composite fibrous materials continue to generate significant interest for wastewater treatment, food packaging, and biomedical applications. This relates to the relatively high surface area and porosity of such fibrous chitosan materials that synergize with their unique physicochemical properties. Various methods are involved in the preparation of chitosan composite fibrous materials, which include the modification of the biopolymer that serve to alter the solubility of chitosan, along with post-treatment of the composite materials to improve the water stability or to achieve tailored functional properties. Two promising methods to produce such composite fibrous materials involve freeze-drying and electrospinning. Future developments of such composite fibrous materials demands an understanding of the various modes of preparation and methods of structural characterization of such materials. This review contributes to an understanding of the structure–property relationships of composite fibrous materials that contain chitosan, along with an overview of recent advancements concerning their preparation.
Collapse
|
4
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
5
|
Kaczmarek H, Rybczyński P, Maćczak P, Smolarkiewicz-Wyczachowski A, Ziegler-Borowska M. Chitosan as a Protective Matrix for the Squaraine Dye. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1171. [PMID: 33801523 PMCID: PMC7958846 DOI: 10.3390/ma14051171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Chitosan was used as a protective matrix for the photosensitive dye-squaraine (2,4-bis[4-(dimethylamino)phenyl]cyclobutane-1,3-diol). The physicochemical properties of the obtained systems, both in solution and in a solid-state, were investigated. However, it was found that diluted chitosan solutions with a few percent additions of dye show an intense fluorescence, which is suppressed in the solid-state. This is related to the morphology of the heterogeneous modified chitosan films. The important advantage of using a biopolymer matrix is the prevention of dye degradation under the influence of high energy ultraviolet (UV) radiation while the dye presence improves the chitosan heat resistance. It is caused by mutual interactions between macromolecules and dye. Owing to the protective action of chitosan, the dye release in liquid medium is limited. Chitosan solutions with a few percent additions of squaraine can be used in biomedical imaging thanks to the ability to emit light, while chitosan films can be protective coatings resistant to high temperatures and UV radiation.
Collapse
Affiliation(s)
- Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
| | - Patryk Rybczyński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
| | - Piotr Maćczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
- Water Supply and Sewage Enterprise LLC, Przemysłowa 4, 99-300 Kutno, Poland
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
| |
Collapse
|
6
|
Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan SRI. Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. Int J Biol Macromol 2021; 178:270-282. [PMID: 33647336 DOI: 10.1016/j.ijbiomac.2021.02.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
The transition-metal dichalcogenides (TMDCs) like MoS2 and WS2 are a new and interesting class of materials and show considerable promise for use in a wide variety of fields, including nanomedicine for cancer. The eco-friendly, biodegradability, toxicity, and antimicrobial activity remain an open issue. Herein, we focused on the current demands of two dimensional (2D) TMDCs and produced high-quality, few-layered MoS2 nanosheets. Noble metal Ag incorporated into the 2D-CS/MoS2 NC by the liquid exfoliated process. The manufactured CS/MoS2/Ag hybrid NC showed excellent antibacterial activity against two microorganisms such as Gram-positive (21, 27, and 33 mm) and Gram-negative bacteria (23, 30, and 39 mm). The CS/MoS2/Ag hybrid NC was designed to have significant antibacterial activity against E.coli bacteria than S.aureus. Furthermore, the hybrid NC has a 74.18% cell inhibition against MCF-7 cancer cells. According to the literature relevant, it is the first extensive experimental analysis on the nano-bio interaction of 2D TMDCs nanomaterials in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India.
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Selvam Samayanan
- Department of Chemical and Biochemical Engineering, Dongguk University, Jung-Gu, Pil-Dong, Seoul 100715, Republic of Korea
| | - Sarojini Jeeva Panchu
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - Hendrik C Swart
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | | |
Collapse
|
7
|
Improve in CO2 and CH4 Adsorption Capacity on Carbon Microfibers Synthesized by Electrospinning of PAN. FIBERS 2019. [DOI: 10.3390/fib7100081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon microfibers (CMF) has been used as an adsorbent material for CO2 and CH4 capture. The gas adsorption capacity depends on the chemical and morphological structure of CMF. The CMF physicochemical properties change according to the applied stabilization and carbonization temperatures. With the aim of studying the effect of stabilization temperature on the structural properties of the carbon microfibers and their CO2 and CH4 adsorption capacity, four different stabilization temperatures (250, 270, 280, and 300 °C) were explored, maintaining a constant carbonization temperature (900 °C). In materials stabilized at 250 and 270 °C, the cyclization was incomplete, in that, the nitrile groups (triple-bond structure, e.g., C≡N) were not converted to a double-bond structure (e.g., C=N), to form a six-membered cyclic pyridine ring, as a consequence the material stabilized at 300 °C resulting in fragile microfibers; therefore, the most appropriate stabilization temperature was 280 °C. Finally, to corroborate that the specific surface area (microporosity) is not the determining factor that influences the adsorption capacity of the materials, carbonization of polyacrylonitrile microfibers (PANMFs) at five different temperatures (600, 700, 800, 900, and 1000 °C) is carried, maintaining a constant temperature of 280 °C for the stabilization process. As a result, the CMF chemical composition directly affects the CO2 and CH4 adsorption capacity, even more directly than the specific surface area. Thus, the chemical variety can be useful to develop carbon microfibers with a high adsorption capacity and selectivity in materials with a low specific surface area. The amount adsorbed at 25 °C and 1.0 bar oscillate between 2.0 and 2.9 mmol/g adsorbent for CO2 and between 0.8 and 2.0 mmol/g adsorbent for CH4, depending on the calcination treatment applicated; these values are comparable with other material adsorbents of greenhouse gases.
Collapse
|