1
|
Bernatoniene J, Nemickaite E, Majiene D, Marksa M, Kopustinskiene DM. In Vitro and In Silico Anti-Glioblastoma Activity of Hydroalcoholic Extracts of Artemisia annua L. and Artemisia vulgaris L. Molecules 2024; 29:2460. [PMID: 38893336 PMCID: PMC11173592 DOI: 10.3390/molecules29112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma, the most aggressive and challenging brain tumor, is a key focus in neuro-oncology due to its rapid growth and poor prognosis. The C6 glioma cell line is often used as a glioblastoma model due to its close simulation of human glioma characteristics, including rapid expansion and invasiveness. Alongside, herbal medicine, particularly Artemisia spp., is gaining attention for its anticancer potential, offering mechanisms like apoptosis induction, cell cycle arrest, and the inhibition of angiogenesis. In this study, we optimized extraction conditions of polyphenols from Artemisia annua L. and Artemisia vulgaris L. herbs and investigated their anticancer effects in silico and in vitro. Molecular docking of the main phenolic compounds of A. annua and A. vulgaris and potential target proteins, including programmed cell death (apoptosis) pathway proteins proapoptotic Bax (PDB ID 6EB6), anti-apoptotic Bcl-2 (PDB ID G5M), and the necroptosis pathway protein (PDB ID 7MON), mixed lineage kinase domain-like protein (MLKL), in complex with receptor-interacting serine/threonine-protein kinase 3 (RIPK3), revealed the high probability of their interactions, highlighting the possible influence of chlorogenic acid in modulating necroptosis processes. The cell viability of rat C6 glioma cell line was assessed using a nuclear fluorescent double-staining assay with Hoechst 33342 and propidium iodide. The extracts from A. annua and A. vulgaris have demonstrated anticancer activity in the glioblastoma model, with the synergistic effects of their combined compounds surpassing the efficacy of any single compound. Our results suggest the potential of these extracts as a basis for developing more effective glioblastoma treatments, emphasizing the importance of further research into their mechanisms of action and therapeutic applications.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Emilija Nemickaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
| | - Daiva Majiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu Street 4, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
2
|
Kostecka-Gugała A. Quinces ( Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants (Basel) 2024; 13:71. [PMID: 38247495 PMCID: PMC10812678 DOI: 10.3390/antiox13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the evaluation of many plant-derived compounds as potential new drugs or functional foods has become an active research topic. The morphological characteristics of quinces of the genera Cydonia sp., Chaenomeles sp., and Pseuocydonia sp. are largely similar, which is why these fruits are often confused. Although they have been appreciated in Asia for centuries as a valuable component of local ethnomedicine, they are less known in Western countries, and scientific knowledge about their health benefits remains fragmentary. This literature review summarizes studies on the content of chemical compounds responsible for the health-promoting and functional properties of the quince fruit. It focuses on the content of carotenoids, vitamins, minerals, and carboxylic acids, although the main emphasis is on the content and diversity of bioactive polyphenols, which are extremely abundant in these fruits. The quince fruits are rich in antioxidants and compounds with proven anti-inflammatory, anticancer, antiallergic, and immunomodulatory effects. Their phytochemicals effectively regulate glycemia and improve the blood lipid profile, suggesting potential antidiabetic and cardioprotective benefits. Analysis of chemical characteristics showed that the Chaenomeles fruits. are underestimated as functional food ingredients. Studies on the molecular effects of their bioactive compounds and species-specific genomic analyses are sorely lacking in the scientific literature.
Collapse
Affiliation(s)
- Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
3
|
Xu R, Kuang M, Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch Pharm Res 2023; 46:825-854. [PMID: 38062238 DOI: 10.1007/s12272-023-01475-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Chaenomeles plants belong to the Rosaceae family and include five species, Chaenomeles speciosa (Sweet) Nakai, Chaenomeles sinensis (Thouin) Koehne, Chaenomeles japonica (Thunb.) Lindl, Chaenomeles cathayensis (Hemsl.) Schneid and Chaenomeles thibetica Yu. Chaenomeles plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the Chaenomeles genus, and all Chaenomeles species except for C. japonica are indigenous to China. Chaenomeles spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus Chaenomeles exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus Chaenomeles to serve as a valuable reference for further investigations.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mengting Kuang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Phenolic Acid Profiling of Lactarius hatsudake Extracts, Anti-Cancer Function and Its Molecular Mechanisms. Foods 2022; 11:foods11131839. [PMID: 35804655 PMCID: PMC9266154 DOI: 10.3390/foods11131839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is still the leading cause of death across the world, and there is a lack of efficient therapies. Lactarius hatsudake is a mushroom with a food and medicine homology that contains numerous biologically active substances. This study aimed to investigate the composition of extracts from Lactarius hatsudake (L. hatsudake) and their anti-cancer function and molecular mechanisms. Our results showed that the total phenolic content of L. hatsudake extracts was 139.46 ± 5.42 mg/g. The following six phenolic compounds were identified from L. hatsudake extracts by HPLC and UPLC-QTOF/MS: gallic acid, pyrogallol, chlorogenic acid, ferulic acid, myricetin, and cinnamic acid. Colorectal cancer cell HCT116 and hepatic cancer cell HepG2 were used to evaluate the anti-cancer function of the L. hatsudake extracts. Compared with HepG2 cells, the L. hatsudake extracts showed stronger anti-cancer activity against HCT116 cells and these were used to study molecular mechanisms. The results indicated that the L. hatsudake extracts could arrest the cancer cell cycle and inhibit cancer cell proliferation, which may be mediated by the MAPK/NFκB/AP-1 signalling pathway; the L. hatsudake extracts also promoted cancer cell apoptosis through a mitochondrial-dependent pathway. Taken together, these findings demonstrate that L. hatsudake ethanol extracts contain six main phenolics and illustrate the remarkable potentiality of L. hatsudake as a source of natural phenolics for cancer prevention and as an adjuvant in the treatment of functional foods.
Collapse
|
5
|
Abstract
This work presents an overview of the modern approaches embracing advanced equipment and validation parameters of both liquid and gas chromatography techniques, including thin-layer chromatography (TLC), column liquid chromatography (CLC), and gas chromatography (GC), suitable for the identification and quantitative determination of various bioactive compounds occurring in pharmaceutical products and medicinal plants in the time from 2020 to 2021 (November). This review confirmed that HPLC is an incredibly universal tool, especially when combined with different detectors, such as UV-Visible spectroscopy, mass spectrometry (MS), and fluorescence detection for numerous active ingredients in different pharmaceutical formulations without interferences from other excipients. TLC, in combination with densitometry, is a very efficient tool for the determination of biologically active substances present in pharmaceutical preparations. In addition, TLC coupled to densitometry and mass spectrometry could be suitable for preliminary screening and determination of the biological activity (e.g., antioxidant properties, thin layer chromatography (TLC) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method) of plant materials. Gas chromatography, coupled with a mass spectrometer (GC-MS, GC-MS/MS), is of particular importance in the testing of any volatile substances, such as essential oils. LC, coupled to NMR and MS, is the best solution for identifying and studying the structure of unknown components from plant extracts, as well as degradation products (DPs). Thanks to size-exclusion chromatography, coupled to multi-angle light scattering, the quality control of biological pharmaceuticals is possible.
Collapse
|
6
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
7
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
8
|
Lykholat YV, Khromykh NO, Didur OO, Sklyar TV, Holubieva TA, Lykholat TY, Lavrentievа KV, Liashenko OV. GC-MS analysis of cuticular waxes and evaluation of antioxidant and antimicrobial activity of Chaenomeles cathayensis and Ch. × californica fruits. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fruit extracts of the Chaenomeles species are a rich source of compounds having health-promoting properties, while their distribution between the species and cultivars varies significantly depending on both genotype and environmental threats. This study aimed at discovering antioxidant and antimicrobial potential of the secondary metabolites of fruit and waxes of fruit cuticular of introduced Ch. cathayensis and Ch. × californica plants. The sum of detected polyphenols in the isopropanolic fruit extracts varied slightly between the species, while significant excesses in indices were seen for both species peel extracts as compared to pulp extracts. Antimicrobial assays carried out by disc diffusion method showed notable activity of the fruit peel and pulp extracts of both species against all tested Gram-negative and Gram-positive bacterial strains, and two Candida strains as well. Pseudomonas aeruginosa strain was the most resistant to the action of both fruit extracts, especially peel extracts of Ch. cathayensis fruits. As identified by gas chromatography-mass spectrometry (GC-MS) assays, chloroformic extracts from the fruits of cuticular waxes of Ch. cathayensis and Ch. × californica contained six prevailing fractions: aldehydes, alkanes, alcohols, esters, fatty acids and various terpenoids. The predominant compounds were tetrapentacontane (21.8% of total amount) and heptacosanal (23.1% of total), respectively in the cuticular waxes of Ch. cathayensis and Ch. × californica. Cinnamaldehyde, cis-9-hexadecenal, hexadecanoic acid, oleic acid, olean-12-ene-3,28-diol (3. beta), lupeol, diisooctyl phthalate, 9-octadecenoic acid, 1,2,3-propanetriyl ester, 1,3,12-nonadecatriene-5,14-diol and some other identified compounds are well-known for their bioactivity, indicating the feasibility of studying the antimicrobial potential of plant fruits.
Collapse
|
9
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|