Characterization of Short Chain Fatty Acids Produced by Selected Potential Probiotic
Lactobacillus Strains.
Biomolecules 2022;
12:biom12121829. [PMID:
36551257 PMCID:
PMC9775007 DOI:
10.3390/biom12121829]
[Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs), particularly butyrate, have received considerable attention with regard to their anti-cancer efficacy in delaying or preventing colorectal cancer. Several studies have reported that certain probiotic strains could produce SCFAs; however, different strains yielded different amounts of SCFAs. This study explored the ability to produce SCFAs of the following probiotic strains: Lacticaseibacillus paracasei SD1, Lacticaseibacillus rhamnosus SD4, Lacticaseibacillus rhamnosus SD11, and Lacticaseibacillus rhamnosus GG. L. paracasei SD1 and L. rhamnosus SD11 exhibited high butyrate production, particularly when the strains were combined. The functions of the SCFAs were further characterized; the SCFAs exerted a positive anti-cancer effect in the colon via various actions, including inhibiting the growth of the pathogens related to colon cancer, such as Fusobacterium nucleatum and Porphyromonas gingivalis; suppressing the growth of cancer cells; and stimulating the production of the anti-inflammatory cytokine IL-10 and antimicrobial peptides, especially human β-defensin-2. In addition, the SCFAs suppressed pathogen-stimulated pro-inflammatory cytokines, especially IL-8. The results of this study indicated that selected probiotic strains, particularly L. paracasei SD1 in combination with L. rhamnosus SD11, may serve as good natural sources of bio-butyrate, which may be used as biotherapy for preventing or delaying the progression of colon cancer.
Collapse