1
|
Ozen B, Cavdaroglu C, Tokatli F. Trends in authentication of edible oils using vibrational spectroscopic techniques. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4216-4233. [PMID: 38899503 DOI: 10.1039/d4ay00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The authentication of edible oils has become increasingly important for ensuring product quality, safety, and compliance with regulatory standards. Some prevalent authenticity issues found in edible oils include blending expensive oils with cheaper substitutes or lower-grade oils, incorrect labeling regarding the oil's source or type, and falsely stating the oil's origin. Vibrational spectroscopy techniques, such as infrared (IR) and Raman spectroscopy, have emerged as effective tools for rapidly and non-destructively analyzing edible oils. This review paper offers a comprehensive overview of recent advancements in using vibrational spectroscopy for authenticating edible oils. The fundamental principles underlying vibrational spectroscopy are introduced and chemometric approaches that enhance the accuracy and reliability of edible oil authentication are summarized. Recent research trends highlighted in the review include authenticating newly introduced oils, identifying oils based on their specific origins, adopting handheld/portable spectrometers and hyperspectral imaging, and integrating modern data handling techniques into the use of vibrational spectroscopic techniques for edible oil authentication. Overall, this review provides insights into the current state-of-the-art techniques and prospects for utilizing vibrational spectroscopy in the authentication of edible oils, thereby facilitating quality control and consumer protection in the food industry.
Collapse
Affiliation(s)
- Banu Ozen
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| | - Cagri Cavdaroglu
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| | - Figen Tokatli
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| |
Collapse
|
2
|
Giussani B, Gorla G, Riu J. Analytical Chemistry Strategies in the Use of Miniaturised NIR Instruments: An Overview. Crit Rev Anal Chem 2024; 54:11-43. [PMID: 35286178 DOI: 10.1080/10408347.2022.2047607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Miniaturized NIR instruments have been increasingly used in the last years, and they have become useful tools for many applications on a broad variety of samples. This review focuses on miniaturized NIR instruments from an analytical point of view, to give an overview of the analytical strategies used in order to help the reader to set up their own analytical methods, from the sampling to the data analysis. It highlights the uses of these instruments, providing a critical discussion including current and future trends.
Collapse
Affiliation(s)
- Barbara Giussani
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Giulia Gorla
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Jordi Riu
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Santiago-Mora P, Skinner M, Hendricks A, Rimkus T, Meyer B, Gratzek J, Pu S, Woodbury L, Bond L, McDougal O. Pulsed electric field effect on acrylamide reduction and quality attributes of continuous-style Lamoka potato chips. Heliyon 2024; 10:e31790. [PMID: 38873662 PMCID: PMC11170098 DOI: 10.1016/j.heliyon.2024.e31790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Potato chips are a popular snack, well-liked because of their texture-flavor combination. Potato chips are made by frying slices of potato in vegetable oil to achieve a crispy texture. Frying potato slices initiates the Maillard reaction, resulting in chemical changes that enhance taste, color, and texture, but also undesired acrylamides, which are suspected carcinogens. The application of pulsed electric field (PEF) technology is commonly used in French fry processing operations to prolong cutting blade sharpness and reduce waste, energy consumption, and water usage. Despite these attributes, PEF systems have not yet gained widespread adoption by potato chip producers. In the current study, Lamoka potatoes were PEF-treated prior to continuous frying into potato chips. The effect of specific energy at 0.75 kJ/kg (Low-PEF) and 1.5 kJ/kg (High-PEF) and electric field strength of 1 kV/cm, frequency of 24 kV, and pulse width of 6 μs versus untreated (control) samples was studied, then batches of 250 g of slices were fried at 170 °C or 185 °C for two frying times to obtain potato chips with acrylamide levels below the California Proposition 65 limit (275 ng/g). The Lamoka potato chip product quality metrics that were assessed include moisture, fat, reducing sugars, asparagine, acrylamide, chip color, and texture. PEF treatment of Lamoka potatoes resulted in chips fried in 10 % less time, lower oil content by 8 %, and a decrease of reducing sugars by 19.2 %, asparagine by 42.0 %, and acrylamide by 28.9 %. The PEF fried chips were lighter in color but maintained textural attributes compared to continuous frying cooking. The process of frying potato slices at 170 °C for 150 s with High-PEF yielded potato chips with acrylamide content below the California Proposition 65 limit; which speaks to the health implications for consumers and the quality and safety of these chips.
Collapse
Affiliation(s)
- Priscila Santiago-Mora
- Department of Chemistry and Biochemistry, Food and Dairy Innovation Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Mark Skinner
- Department of Chemistry and Biochemistry, Food and Dairy Innovation Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Alyssa Hendricks
- Department of Chemistry and Biochemistry, Food and Dairy Innovation Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Tauras Rimkus
- Department of Chemistry and Biochemistry, Food and Dairy Innovation Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Brian Meyer
- Food Physics, 8512 W Elisa St, Boise, ID, 83709, USA
| | - Jim Gratzek
- Food Physics, 8512 W Elisa St, Boise, ID, 83709, USA
| | - Shin Pu
- Biomolecular Research Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Owen McDougal
- Department of Chemistry and Biochemistry, Food and Dairy Innovation Center, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| |
Collapse
|
4
|
Yao S, Miyagusuku-Cruzado G, West M, Nwosu V, Dowd E, Fountain J, Giusti MM, Rodriguez-Saona LE. Nondestructive and Rapid Screening of Aflatoxin-Contaminated Single Peanut Kernels Using Field-Portable Spectroscopy Instruments (FT-IR and Raman). Foods 2024; 13:157. [PMID: 38201185 PMCID: PMC10779085 DOI: 10.3390/foods13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
A nondestructive and rapid classification approach was developed for identifying aflatoxin-contaminated single peanut kernels using field-portable vibrational spectroscopy instruments (FT-IR and Raman). Single peanut kernels were either spiked with an aflatoxin solution (30 ppb-400 ppb) or hexane (control), and their spectra were collected via Raman and FT-IR. An uHPLC-MS/MS approach was used to verify the spiking accuracy via determining actual aflatoxin content on the surface of randomly selected peanut samples. Supervised classification using soft independent modeling of class analogies (SIMCA) showed better discrimination between aflatoxin-contaminated (30 ppb-400 ppb) and control peanuts with FT-IR compared with Raman, predicting the external validation samples with 100% accuracy. The accuracy, sensitivity, and specificity of SIMCA models generated with the portable FT-IR device outperformed the methods in other destructive studies reported in the literature, using a variety of vibrational spectroscopy benchtop systems. The discriminating power analysis showed that the bands corresponded to the C=C stretching vibrations of the ring structures of aflatoxins were most significant in explaining the variance in the model, which were also reported for Aspergillus-infected brown rice samples. Field-deployable vibrational spectroscopy devices can enable in situ identification of aflatoxin-contaminated peanuts to assure regulatory compliance as well as cost savings in the production of peanut products.
Collapse
Affiliation(s)
- Siyu Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA (M.M.G.); (L.E.R.-S.)
| | - Megan West
- Mars Wrigley, Inc., 1132 W. Blackhawk Street, Chicago, IL 60642, USA (E.D.)
| | - Victor Nwosu
- Mars Wrigley, Inc., 1132 W. Blackhawk Street, Chicago, IL 60642, USA (E.D.)
| | - Eric Dowd
- Mars Wrigley, Inc., 1132 W. Blackhawk Street, Chicago, IL 60642, USA (E.D.)
| | - Jake Fountain
- Department of Plant Pathology, University of Georgia, 216 Redding Building, 1109 Experiment St., Griffin, GA 30223, USA
| | - M. Monica Giusti
- Department of Food Science and Technology, The Ohio State University, Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA (M.M.G.); (L.E.R.-S.)
| | - Luis E. Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA (M.M.G.); (L.E.R.-S.)
| |
Collapse
|
5
|
Gullifa G, Barone L, Papa E, Giuffrida A, Materazzi S, Risoluti R. Portable NIR spectroscopy: the route to green analytical chemistry. Front Chem 2023; 11:1214825. [PMID: 37818482 PMCID: PMC10561305 DOI: 10.3389/fchem.2023.1214825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
There is a growing interest for cost-effective and nondestructive analytical techniques in both research and application fields. The growing approach by near-infrared spectroscopy (NIRs) pushes to develop handheld devices devoted to be easily applied for in situ determinations. Consequently, portable NIR spectrometers actually result definitively recognized as powerful instruments, able to perform nondestructive, online, or in situ analyses, and useful tools characterized by increasingly smaller size, lower cost, higher robustness, easy-to-use by operator, portable and with ergonomic profile. Chemometrics play a fundamental role to obtain useful and meaningful results from NIR spectra. In this review, portable NIRs applications, published in the period 2019-2022, have been selected to indicate starting references. These publications have been chosen among the many examples of the most recent applications to demonstrate the potential of this analytical approach which, not having the need for extraction processes or any other pre-treatment of the sample under examination, can be considered the "true green analytical chemistry" which allows the analysis where the sample to be characterized is located. In the case of industrial processes or plant or animal samples, it is even possible to follow the variation or evolution of fundamental parameters over time. Publications of specific applications in this field continuously appear in the literature, often in unfamiliar journal or in dedicated special issues. This review aims to give starting references, sometimes not easy to be found.
Collapse
Affiliation(s)
- G. Gullifa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - L. Barone
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - E. Papa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - A. Giuffrida
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - S. Materazzi
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - R. Risoluti
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| |
Collapse
|
6
|
Prediction of wheat flours composition using fourier transform infrared spectrometry (FT-IR). Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhang Z, Kuo JCT, Zhang C, Huang Y, Lee RJ. Ivermectin Enhanced Antitumor Activity of Resiquimod in a Co-Loaded Squalene Emulsion. J Pharm Sci 2022; 111:3038-3046. [PMID: 35697319 DOI: 10.1016/j.xphs.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
Immunogenic cell death (ICD) plays an important role in sensitizing tumor cells to antigen-presenting cells followed by antitumor immunity. However, a successful antitumor response by ICD requires both apoptotic tumor microenvironments and activated immune systems. Ivermectin (IVM) has been shown to induce cell apoptosis through autophagy which can be a great candidate for ICD therapy. However, a single treatment of IVM-free drug is not an ideal anticancer therapy due to its anti-inflammatory effects and cytotoxicity. In the present study, IVM was shown to enhance the ICD process in addition to the treatment of resiquimod (R848), a TLR7/8 agonist, when co-loaded in a squalene-based nanoemulsion (NE). R848-IVM co-loaded NE was developed and characterized in vitro. Antitumor activity of R848-IVM NE was also evaluated in vitro and in vivo. R848-IVM NE exhibited long-term stability and reduced cytotoxicity by IVM. In vivo studies demonstrated that IVM significantly augments the ICD by upregulating Cd8a and releasing HMGB1 in tumor tissue, which could enhance R848-driven antitumor immunity. R848-IVM NE treatment showed strong antitumor activity with over 80% tumor growth inhibition, suggesting a potential combination therapy of systemic co-delivering IVM with TLR agonists against solid cancer.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| | - Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| | - Yirui Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Food Authentication: Techniques, Trends and Emerging Approaches (Second Issue). Foods 2022; 11:foods11131926. [PMID: 35804739 PMCID: PMC9265475 DOI: 10.3390/foods11131926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
The authentication of foods and beverages is a very current topic of great interest for all the actors involved in the food chain, including the food industry, consumers, and food science researchers [...]
Collapse
|
9
|
Li F, Zhang J, Wang Y. Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods. Crit Rev Anal Chem 2022; 54:333-354. [PMID: 35533108 DOI: 10.1080/10408347.2022.2073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.
Collapse
Affiliation(s)
- Fengjiao Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
10
|
Salas-Valerio WF, Aykas DP, Hatta Sakoda BA, Ludeña-Urquizo FE, Ball C, Plans M, Rodriguez-Saona L. In-field screening of trans-fat levels using mid- and near-infrared spectrometers for butters and margarines commercialized in the Peruvian market. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021; 13:pharmaceutics13122060. [PMID: 34959344 PMCID: PMC8706843 DOI: 10.3390/pharmaceutics13122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Agonists for toll-like receptors (TLRs) have shown promising activities against cancer. In the present study, a squalene-based nanoemulsion (NE) was loaded with resiquimod, a TLR7/8 agonist for therapeutic delivery. R848 NE was developed and characterized for long-term stability. In vitro and in vivo antitumor immunity of R848 NE were also evaluated in combination with SD-101, a CpG-containing TLR9 agonist. In vitro studies demonstrated strong long-term stability and immune responses to R848 NE. When combined with SD-101, strong antitumor activity was observed in MC38 murine colon carcinoma model with over 80% tumor growth inhibition. The combination treatment showed a 4-fold increase in systemic TNFa production and a 2.6-fold increase in Cd8a expression in tumor tissues, suggesting strong cell-mediated immune responses against the tumor. The treatment not only demonstrated a strong antitumor immunity by TLR7/8 and TLR9 activations but also induced PD-L1 upregulation in tumors, suggesting a potential therapeutic synergy with immune checkpoint inhibitors.
Collapse
|