1
|
Villamil-Galindo E, Jacobo-Velázquez DA, Piagentini AM. Combining Abiotic Stresses as a Low-Cost Strategy for Increasing the Phenolic Content in Apple Agro-Industrial By-Products. Antioxidants (Basel) 2025; 14:287. [PMID: 40227315 PMCID: PMC11939634 DOI: 10.3390/antiox14030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
The circular economy approach offers innovative solutions for valorizing apple by-products through biofortification strategies transforming waste into high-value products and reducing environmental impact. This study evaluates innovative solutions for valorizing Granny Smith apple peel (RM) through biofortification in phenolic compounds using individual or combined abiotic stresses, like wounding stress and ultraviolet A (UVA) radiation. The effects of cutting type (Ct) [whole (C1), 5 mm (C2), 1.5 mm (C3)], storage temperature (ST) [20, 15, 10, 5 °C], and storage time (TM) [0, 12, 24, 48, 72 h] on phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) activity, total phenolic content (TPC), and phenolic profiles were studied first. The results show that higher stress intensity (C3, 15 °C, 48 h) significantly enhanced secondary metabolism, leading to notable increases in PAL activity (1201%), PPO activity (308%), TPC levels (108-118%), and Procyanidin B2 (PACB2, 22%), the predominant phenolic compound. These changes were critical for improving the bioactive properties and antioxidant potential of RM. The second assay combined wounding stress (same levels of Ct and ST of previous assay, TM: 56 h) with UVA radiation (UVA-D) [0, 86.4 KJ m-2, 172.8 KJ m-2], determining the optimal conditions (C3, UVA-D 66 KJ m-2, 17 °C) for maximizing PAL activity (0.12-0.20 ΔA h⁻1 mg⁻1), and TPC (3.3 g GAE kg⁻1). This study demonstrates the potential of combined abiotic stresses as cost-effective scalable tools to biofortify RM, promoting the sustainable and value-added utilization of agro-industrial by-products.
Collapse
Affiliation(s)
- Esteban Villamil-Galindo
- Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Zapopan 45201, Mexico;
| | - Andrea Marcela Piagentini
- Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina;
| |
Collapse
|
2
|
Tang Y, Yang Y, Luo F, Luo J, Hu J, Yu H, Li W, Gao J, Fu F. Identification of novel natural anti-browning agents based on phenotypic and metabolites differences in potato cultivars. Food Chem 2025; 463:141450. [PMID: 39362095 DOI: 10.1016/j.foodchem.2024.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to elucidate the changes of browning-related metabolite in fresh-cut potato and to identify anti-browning agents. Metabolomics and weighted correlation network analysis (WGCNA) were used to identify metabolites and correlate them with potato browning traits. A total of 79 browning trait-positive-related metabolites and 19 browning trait-negative-related metabolites were obtained from four key modules via WGCNA. The accumulation of metabolites with rich reducing groups and acidic groups were found to enhance anti-browning activity in potatoes. Among these metabolites, only L-pyroglutamic acid (L-PA) and ascorbic acid had variable importance for the projection (VIP) values greater than 1.5. In addition, it was found that L-PA inhibited polyphenol oxidase (PPO) activity by lowering pH and interacting with amino acid residues of PPO. L-PA also inhibited the growth of microorganisms in fresh-cut potato. Our results show that L-AP is an effective novel anti-browning agent with antibacterial activity.
Collapse
Affiliation(s)
- Yueming Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Yiwen Yang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyao Luo
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jinghong Luo
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jianjun Hu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jia Gao
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Shi J, Xie W, Sun Y, Shi Q, Xing X, Wang Q, Li Q. Calcium chloride connects potato greening and enzymatic browning through salicylic acid. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100229. [PMID: 39679359 PMCID: PMC11638626 DOI: 10.1016/j.fochms.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 12/17/2024]
Abstract
Greening and enzymatic browning are important factors causing post-harvest losses in potatoes. Although they are two different biological processes, there are some common inhibitors between them. Whether there is a correlation between the two has yet to be studies. In this research, we conducted transcriptome analysis of non-greening and greening potatoes, identifying several browning-related genes (polyphenol oxidase genes and peroxidase genes). Compared to non-greening potatoes, greening potatoes exhibited a greater browning degree. And calcium chloride (CaCl2) can inhibit both greening and enzymatic browning. However, the inhibitory effect on potatoes was weakened when treated simultaneously with SA synthesis inhibitor and CaCl2, indicating that CaCl2 can regulate potato greening and browning by affecting internal SA synthesis. Additionally, exogenous SA treatment of potato tubers can also inhibit enzymatic browning. Our study not only demonstrated that CaCl2 and SA can serve as a bridge connecting the potato greening and enzymatic browning, but also provided important references for the development of novel co-inhibitors.
Collapse
Affiliation(s)
- Jingkui Shi
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Wenxin Xie
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Yanmei Sun
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingyu Shi
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Xin Xing
- Weihai City Agriculture and Rural Affairs Service Center, 2 Renfang Road, Weihai 264200, Shandong, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingqing Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| |
Collapse
|
4
|
Zou H, Li C, Wei X, Xiao Q, Tian X, Zhu L, Ma B, Ma F, Li M. Expression of the polyphenol oxidase gene MdPPO7 is modulated by MdWRKY3 to regulate browning in sliced apple fruit. PLANT PHYSIOLOGY 2024; 197:kiae614. [PMID: 39535880 DOI: 10.1093/plphys/kiae614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Browning is a pervasive problem in horticultural products, substantially diminishing the appearance, flavor, and nutritional value of fruit, including important fruits like apple (Malus × domestica Borkh.). In this study, we compared the physiological characteristics of the browning-resistant line 'Rb-18' with the susceptible variety 'Fuji' and found that the polyphenol oxidase (PPO) enzyme activity and phenolic content of 'Rb-18' were significantly lower than those in 'Fuji'. In addition, the PPO enzyme in 'Fuji' showed a stronger affinity for its substrate, catechol, compared to 'Rb-18'. Through transcriptome and RT-qPCR analyses, MdPPO7 expression was identified as contributing to flesh browning after cutting. Subsequent fruit injection and stable genetic transformation of the MdPPO7 gene into apple fruit and calli determined that syringic acid, procyanidin, phloridzin, chlorogenic acid, gallic acid, catechin, and caffeic act as its catalytic substrates in the process involved in browning. Furthermore, luciferase reporter, yeast 1-hybrid, β-glucuronidase reporter assays and ChIP-qPCR analysis demonstrated that a WRKY transcription factor (MdWRKY3) binds to the promoter region of polyphenol oxidase gene (MdPPO7) and positively regulates its expression to promote apple flesh browning. This study provides insights into the molecular regulatory mechanisms of fruit browning in fresh-cut apples and provides a theoretical basis for the generation of high-quality apple germplasm resources.
Collapse
Affiliation(s)
- Hui Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengzhu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qian Xiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaocheng Tian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Liang Y, Luo K, Wang B, Huang B, Fei P, Zhang G. Inhibition of polyphenol oxidase for preventing browning in edible mushrooms: A review. J Food Sci 2024; 89:6796-6817. [PMID: 39363229 DOI: 10.1111/1750-3841.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Edible mushrooms are rich in nutrients and bioactive compounds, but their browning affects their quality and commercial value. This article reviews various methods to inhibit polyphenol oxidase (PPO)-induced browning in mushrooms. Physical methods such as heat treatment, low temperatures, irradiation, and ultrasound effectively reduce PPO activity but may affect mushroom texture and flavor. Chemical inhibitors, including synthetic chemicals and natural plant extracts, provide effective PPO inhibition but require careful monitoring of their content. Biological methods, including gene editing and microbial fermentation, show promise in targeting PPO genes and enhancing antioxidant production. Combining these methods offers a comprehensive strategy for preserving mushroom quality, extending shelf life, and maintaining nutritional value. PRACTICAL APPLICATION: These approaches can be applied in the food industry to improve post-harvest mushroom preservation, enhance product quality, and reduce waste, benefiting both producers and consumers. Further research and innovation are needed to optimize the practical application of these methods in large-scale processing and storage conditions.
Collapse
Affiliation(s)
- Yingqi Liang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Kaimei Luo
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingli Wang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingqing Huang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Peng Fei
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Guoguang Zhang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| |
Collapse
|
6
|
Zhao J, Zou Q, Bao T, Kong M, Gu T, Jiang L, Wang T, Xu T, Wang N, Zhang Z, Chen X. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108934. [PMID: 39003974 DOI: 10.1016/j.plaphy.2024.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Apple (Malus domestica Borkh.) is among the most widely planted and economically valuable horticultural crops globally. Over time, the apple fruit's cut surface undergoes browning, and the degree of browning varies among different apple varieties. Browning not only affects the appearance of fruits but also adversely affects their taste and flavor. In the present study, we observed browning in different apple varieties over time and analyzed the expression of genes in the polyphenol oxidase gene family. The results indicated a strong correlation between the browning degree of the fruit and the relative expression of the polyphenol oxidase gene MdPPO2. With the MdPPO2 promoter as bait, the basic leucine zipper (bZIP) transcription factor MdbZIP44 was identified using the yeast single-hybrid screening method. Further investigation revealed that the overexpression of MdbZIP44 in 'Orin' callus could enhance the expression of MdPPO2 and promote browning of the callus. However, knocking out MdbZIP44 resulted in a callus with no apparent browning phenotype. In addition, our results confirmed the interaction between MdbZIP44 and MdbZIP11. In conclusion, the results indicated that MdbZIP44 can induce apple fruit browning by activating the MdPPO2 promoter. The results provide a theoretical basis for further clarifying the browning mechanism of apple fruit.
Collapse
Affiliation(s)
- Jianwen Zhao
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Qi Zou
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tiantian Bao
- Tai'an Academy of Agricultural Sciences, 271000, Tai'an, Shandong, China
| | - Meng Kong
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tingting Gu
- College of Agricultural Science and Technology, Shandong Agricultural and Engineering University, 250100, Jinan, Shandong, China
| | - Lepu Jiang
- Key Laboratory of Biological Resources Protection and Utilization Corps of Tarim Basin, Tarim University, 843300, Alar, Xinjiang, China
| | - Tong Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tongyao Xu
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| | - Xuesen Chen
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| |
Collapse
|
7
|
Eelager MP, Masti SP, Chougale RB, Dalbanjan NP, Praveen Kumar SK. Noni (Morinda citrifolia) leaf extract incorporated methylcellulose active films: A sustainable strategy for browning inhibition in apple slice packaging. Int J Biol Macromol 2024; 269:132270. [PMID: 38734347 DOI: 10.1016/j.ijbiomac.2024.132270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Methylcellulose, a prominent polysaccharide prevalent in the food sector, was considered to fabricate the active films with glutaraldehyde as a crosslinker and Noni (Morinda citrifolia) Leaf Extract (NLE) as an active agent. FTIR analysis confirms the intermolecular -OH bonding, and SEM micrograms demonstrate methylcellulose active films' homogeneous, dense morphologic appearance. Due to the crosslinking effect of glutaraldehyde and noni leaf extract, tensile strength (41.83 ± 0.134 MPa) and crystallinity (62.91 %) of methylcellulose films were improved. Methylcellulose active films suppress water and moisture uptake at various relative humidities. The inhibition capability against foodborne pathogens and the excellent antioxidant activity [DPPH (93.191 ± 1.384 %) and ABTS (90.523 ± 1.412 %)] of NLE incorporation suggested that food packed in methylcellulose active films were effective against pathogenic and oxidative attacks. During preservation, to ensure the apple slices' nutritional values, they are covered with physiochemically enhanced methylcellulose active films for up to 120 h. The minimum reduction in vitamin C, reducing sugar content, percentage weight loss, pH, and total phenolic content of apple slices preserved in MGN active films at room temperature suggests it is an affordable and efficient replacement to traditional single-use plastic packaging in the cut fruit industry.
Collapse
Affiliation(s)
- Manjunath P Eelager
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Ravindra B Chougale
- PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | | | - S K Praveen Kumar
- PG Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| |
Collapse
|
8
|
Wang W, Cao Z, Hou F, Shi J, Jiao J, Chen L, Gong Z, Wang Y. Quality maintenance mechanism of oxalic acid treatment in fresh-cut apple fruit during storage based on nontarget metabolomics analysis. Food Chem 2024; 436:137685. [PMID: 37832420 DOI: 10.1016/j.foodchem.2023.137685] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
A complicated storage reaction mechanism will occur during the storage period in fresh-cut apples, and oxalic acid could physiologically modify the flesh tissue to achieve preservation purposes. This study revealed the storage quality regulation mechanism treated with oxalic acid (3 mmol⋅L-1) in fresh-cut apples through nontarget metabolomics and physiological analyses. It was discovered that oxalic acid could enhance the antioxidant enzymes activities, i.e. superoxide dismutase, catalase, glutathione reductase, etc., contents of soluble solids, total phenolic and reducing sugar, postpone the enhancement of hydrogen peroxide and superoxide anion, and defer the decrease of titratable acid, hardness and total antioxidant capacity. 427 differentially expressed metabolites were identified by nontarget metabolomics. Among them, mainly involved in glycerol ester metabolism, phenylalanine metabolism, starch and sucrose metabolism, etc. were up-regulated treated with oxalic acid. In summary, oxalic acid could enhance the antioxidant properties and regulate metabolite synthesis, leading to delayed quality deterioration of fresh-cut apples.
Collapse
Affiliation(s)
- Wenliang Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Ziming Cao
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China; College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Furong Hou
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Junyan Shi
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Leilei Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Zhiqing Gong
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China
| | - Yansheng Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, PR China.
| |
Collapse
|
9
|
Peng H, Simko I. Extending lettuce shelf life through integrated technologies. Curr Opin Biotechnol 2023; 81:102951. [PMID: 37182322 DOI: 10.1016/j.copbio.2023.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
Lettuce, a leafy vegetable used in cuisines worldwide, is a highly perishable product sensitive to postharvest losses caused by biotic and abiotic factors. The existing technologies and approaches used during plant cultivation, harvest, processing, transportation, and storage can limit the postharvest issues, but further improvements are needed to meet a growing demand for excellent product appearance, combined with superb quality, biosafety, and low economic and environmental cost. This review summarizes our current understanding of lettuce postharvest physiology and genetics with focus on enzymatic discoloration of wounded surfaces and rapid tissue deterioration. Discussed are existing and emerging integrated technologies and approaches that can facilitate achieving outstanding postharvest quality of lettuce products.
Collapse
Affiliation(s)
- Hui Peng
- Everglades Research and Education Center - Horticultural Sciences Department, University of Florida, Belle Glade, FL 95616, USA
| | - Ivan Simko
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA.
| |
Collapse
|
10
|
Gapper NE, Bowen JK, Brummell DA. Biotechnological approaches for predicting and controlling apple storage disorders. Curr Opin Biotechnol 2023; 79:102851. [PMID: 36446143 DOI: 10.1016/j.copbio.2022.102851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Fruit storage disorders are major causes of crop losses and downgrades. Cold storage, either in air or in controlled atmospheres high in CO2 and low in O2, can result in chilling injury or respiratory injury (due to high internal CO2 concentrations). Here, we review biotechnological approaches currently being used to better understand these processes, to predict to provide resistance/tolerance to them. Reducing postharvest crop losses through improved cultivars or inventory management will be a major contributor to food security.
Collapse
Affiliation(s)
- Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010230. [PMID: 36615424 PMCID: PMC9821871 DOI: 10.3390/molecules28010230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The present research was undertaken to investigate polyphenolic profiles of peel, pulp and juices made from two standard commercial and five traditional apple cultivars from Bosnia and Herzegovina. The main goal of the study was to monitor the distribution and changes of polyphenolic profiles through different phases of apples' processing into cloudy and clear juices, with regard to L-ascorbic acid pretreatment. Quantitative determination of phenolic compounds was carried out by using high-performance liquid chromatography with diode-array detection. The obtained results showed that traditional cultivars, namely 'Paradija' and 'Prijedorska zelenika', displayed significantly higher content of these compounds compared to commercial ones. Flavan 3-ols and flavonol glycosides were mostly found in peels of all cultivars (21.2-44.1 and 5.40-33.3%, respectively), while phenolic acids along with flavan 3-ols were predominant in the pulp (8.20-30.8 and 5.10-13.9%, respectively). Apples' processing into juices caused decrease (more than 90%) in the content of all polyphenols and the distribution of these compounds from fruits to final products had a negative trend, particularly evident in clear juices. The most drastic loss occurred in the flavonol glycosides and dihydrochalcones content, while chlorogenic acid displayed quite stable distribution from apples to final products due to its good solubility. Apple mash pretreatment with L-ascorbic acid had a positive impact on the preservation and retention of polyphenols.
Collapse
|
12
|
Arnold M, Gramza-Michałowska A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:5038-5076. [PMID: 36301625 DOI: 10.1111/1541-4337.13059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023]
Abstract
Apple (Malus domestica) is widely consumed by consumers from various regions. It contains a high number of phenolic compounds (majorly hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols, dihydrochalcones, and anthocyanins) and antioxidant activity, which are beneficial for human health. The trends on healthy and fresh food have driven the food industry to produce minimally processed apple, such as fresh-cut, puree, juice, and so on without degrading the quality of products. Enzymatic browning is one of the problems found in minimally processed apple as it causes the undesirable dark color as well as the degradation of phenolics and antioxidant activity, which then reduces the health benefits of apple. Proper inhibition is needed to maintain the quality of minimally processed apple with minimal changes in sensory properties. This review summarizes the inhibition of enzymatic browning of apple products based on recent studies using the conventional and nonconventional processing, as well as using synthetic and natural antibrowning agents. Nonconventional processing and the use of natural antibrowning agents can be used as promising treatments to prevent enzymatic browning in minimally processed apple products. Combination of 2-3 treatments can improve the effective inhibition of enzymatic browning. Further studies, such on as other potential natural antibrowning agents and their mechanisms of action, should be conducted.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
13
|
Zehra A, Wani SM, Bhat TA, Jan N, Hussain SZ, Naik HR. Preparation of a biodegradable chitosan packaging film based on zinc oxide, calcium chloride, nano clay and poly ethylene glycol incorporated with thyme oil for shelf-life prolongation of sweet cherry. Int J Biol Macromol 2022; 217:572-582. [PMID: 35810854 DOI: 10.1016/j.ijbiomac.2022.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022]
Abstract
This study includes development of chitosan-based films with incorporated essential thyme oil and different combinations of cross-linkers viz., ZnO, CaCl2, NC, and PEG for the safe storage of sweet cherries. The resulting films stored with sweet cherries were analyzed for different physicochemical and antimicrobial properties. Incorporation of ZnO, CaCl2, NC, and PEG in chitosan-based films maintained fruit quality by conserving higher total soluble solids, titratable acidity, and reduced weight loss. The combined ZnO + CaCl2 + NC + PEG in chitosan-based films also suppressed microbial activity. The sensorial quality of fruits stored with CH + ZnO + CaCl2 + NC + PEG treatment was also stable during storage. In conclusion, the combined CH + ZnO + CaCl2 + NC + PEG with added thyme oil application is an effective approach to maintain the postharvest quality and could be an alternative to increase the shelf life of sweet cherries, besides decreasing environmental impacts of non-biodegradable packages.
Collapse
Affiliation(s)
- Aiman Zehra
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India.
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India.
| | - Nusrat Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| | - Haroon Rashid Naik
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| |
Collapse
|
14
|
Mendoza-Wilson AM, Balandrán-Quintana RR, Valdés-Covarrubias MÁ, Cabellos JL. Potential of quercetin in combination with antioxidants of different polarity incorporated in oil-in-water nanoemulsions to control enzymatic browning of apples. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Fang T, Chen J, Lin Q, Zhong Y, Duan Y, Bi J. Phenolic profiling reveals the metabolite basis of flesh color and fresh‐cut browning in apple fruit. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting Fang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 People’s Republic of China
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 People’s Republic of China
| | - Jing Chen
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 People’s Republic of China
| | - Qiong Lin
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 People’s Republic of China
| | - Yaoguang Zhong
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 People’s Republic of China
| | - Yuquan Duan
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 People’s Republic of China
| | - Jinfeng Bi
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 People’s Republic of China
| |
Collapse
|
16
|
Xu J, Wang Y, Zhang X, Zhao Z, Yang Y, Yang X, Wang Y, Liao X, Zhao L. A Novel Method of a High Pressure Processing Pre-Treatment on the Juice Yield and Quality of Persimmon. Foods 2021; 10:foods10123069. [PMID: 34945620 PMCID: PMC8700792 DOI: 10.3390/foods10123069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of a high pressure processing pre-treatment (pre-HPP) on the juice yield of persimmon (Diospyros kaki L.) pulp and the pre-HPP plus HPP or thermal processing (TP) on microorganism inactivation and quality changes of the persimmon juice. The “Gongcheng” persimmon was selected with the highest juice yield (48.9%), and the pre-HPP set at 300 MPa/8 min increased the juice yield by 60% through an increasing pectin methylesterase (PME) activity of 25.03% and by maintaining polygalacturonase (PG) activity. For different processing modes, namely, pre-HPP plus HPP at 550 Mpa/5 min and pre-HPP plus TP treatment at 95 °C/5 min, both of the guaranteed microorganisms in the juice were below 2.0 lg CFU/mL; however, the persimmon juice treated by the pre-HPP plus HPP had higher contents of total phenol and ascorbic acid which were 16.07 mg GAE/100 g and 17.92 mg/100 mL, respectively, a lower content of soluble tannin which was 55.64 μg/mL, better clarity which was 18.6% and less color change where the ΔE was only 2.68.
Collapse
Affiliation(s)
- Jiayue Xu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Yilun Wang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Xinyue Zhang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Zhen Zhao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Yao Yang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Xin Yang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Yongtao Wang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Xiaojun Liao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
| | - Liang Zhao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Key Laboratory of Food Non-Thermal Processing, Ministry of Agricultural and Rural Affairs, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.X.); (Y.W.); (X.Z.); (Z.Z.); (Y.Y.); (X.Y.); (Y.W.); (X.L.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-1062737464
| |
Collapse
|
17
|
Vázquez-Sánchez AY, Corfield R, Sosa N, Salvatori D, Schebor C. Physicochemical, functional, and sensory characterization of apple leathers enriched with acáchul (Ardisia compressa Kunth) powder. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|