1
|
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res Int 2025; 209:116283. [PMID: 40253191 DOI: 10.1016/j.foodres.2025.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/21/2025]
Abstract
Fruits and vegetables (FVs) are rich sources of macro and micro-nutrients crucial for a healthy diet. In addition to these nutrients, FVs also contain fibre and phytochemicals known for their antioxidant properties. Despite the growing evidence of the disease-preventive role of antioxidants in FVs, their bioavailability and bioaccessibility vary significantly and have not been adequately explored. Lactic acid bacterial (LAB) fermentation is considered the most appropriate and accessible biotechnological approach to maintain and enhance the safety, nutritional, sensory and shelf-life properties of perishable foods such as FVs. This review critically assesses how LAB fermentation could be utilised as a promising biotransformation strategy to enhance the bioavailability of antioxidants in FVs. Furthermore, it discusses the potential use of uniquely nutritious Australian native fruits as suitable candidates for LAB fermentation. Further research is essential to identify the beneficial properties of bioactive compounds and effective LAB-based biotransformation strategies to improve the bioavailability and bioaccessibility of antioxidants in FVs.
Collapse
Affiliation(s)
| | - Wahida Tabassum
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Muhammad Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Freedman Foundation Metabolomics Facility, Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Han Z, Shi S, Yao B, Shinali TS, Shang N, Wang R. Recent Insights in
Lactobacillus
-Fermented Fruit and Vegetable Juice: Compositional Analysis, Quality Evaluation, and Functional Properties. FOOD REVIEWS INTERNATIONAL 2025:1-35. [DOI: 10.1080/87559129.2025.2454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Affiliation(s)
- Zixin Han
- China Agricultural University
- China Agricultural University
| | | | | | | | - Nan Shang
- China Agricultural University
- China Agricultural University
| | | |
Collapse
|
3
|
Tong Y, Wang Z, Tong Q, Liu Y. Effects of Lactic Acid Bacteria Fermentation and In Vitro Simulated Digestion on the Bioactivities of Purple Sweet Potato Juice. Foods 2024; 13:4094. [PMID: 39767036 PMCID: PMC11675301 DOI: 10.3390/foods13244094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The effects of lactic acid bacteria fermentation and in vitro simulated digestion on phenolic bioavailability, phenolic bioavailability, and antioxidant activity of purple sweet potato juice (PSPJ) were investigated. The PSPJ was fermented by Lactobacillus rhamnosus and Streptococcus thermophilus. The viable bacterial count, phenolic components, antioxidant activity, phenolic bioaccessibility, and phenolic bioavailability of PSPJ were analyzed during the simulated digestion process in vitro. The data displayed that lactic acid bacteria fermentation increased total α-glucosidase inhibition, total flavonoid content, and ratephenolic content. The antioxidant activities were improved after in vitro simulated digestion due to the biotransformation of phenolic substances by lactic acid bacteria fermentation. The bioaccessibility and bioavailability of phenols in PSPJ were improved with fermentation of lactic acid bacteria. Furthermore, the viable bacteria count of the two strains was significantly improved (>7 log CFU/mL) after simulated digestion in vitro.
Collapse
Affiliation(s)
- Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
| | - Zeqing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Fikri S, Perreault V, Lessard MH, Goulet C, Doyen A, Labrie S. Proanthocyanidins and volatile aroma of cranberry juice are modulated by its microbiota and processing environment. Food Microbiol 2024; 124:104611. [PMID: 39244364 DOI: 10.1016/j.fm.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
The quality and sensory attributes of juices are influenced by their natural microbiota and the microorganisms found on filtration membranes. This study aimed to assess the influence of natural microbiota and specific contaminants, including Candida krusei, Rhodotorula mucilaginosa, Debaryomyces prosopidis, Ralstonia insidiosa, and Lactiplantibacillus paraplantarum, isolated from cranberry juice and its associated industrial filtration membranes, on the characteristics of cranberry juice. Their growth kinetics and impacts on total phenols, total anthocyanins, total proanthocyanins, total organic acids, pH, titratable acidity, and volatile compounds were assessed. During the 42 h fermentation period, Candida krusei and Ralstonia insidiosa exhibited significant growth, increasing by 1-log and 3-log, respectively. The natural microbiota led to a 7% and 6% reduction in anthocyanins and proanthocyanidins, while Candida krusei and Rhodotorula mucilaginosa caused losses of 10% and 7% in proanthocyanidins, respectively. Organic acid content remained stable, except for an 8% decrease caused by Ralstonia insidiosa. Volatile compounds underwent significant increases, particularly in green (703%), winey (100%), mushroom (306%), and fusel (2678%) notes. These findings underscore the rapid impact of microorganisms from natural microbiota and filtration membranes on cranberry juice characteristics, highlighting the importance for beverage industries to prioritize customer safety and satisfaction.
Collapse
Affiliation(s)
- Sherazade Fikri
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Véronique Perreault
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Marie-Hélène Lessard
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Charles Goulet
- Department of Phytology, FSAA, Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Alain Doyen
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
5
|
Silva TO, Costa GN, Dos Santos Lima M, Feihrmann AC, Barão CE, Magnani M, Pimentel TC. Chemical, microbial, and functional characterization of a new fruity probiotic kombucha. Food Res Int 2024; 198:115398. [PMID: 39643353 DOI: 10.1016/j.foodres.2024.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to evaluate the effect of adding Lacticaseibacillus casei as probiotic culture and/or camu-camu (Myrciaria dubia) pulp on the chemical profile, technological, functional, and sensory properties, phenolics concentration and bioaccessibility, and microbiota of kombucha. Adding L. casei decreased some volatile compounds and fruity flavor intensity and increased the Lactobacillus relative abundance (+35.73 %) and lactic acid content (from 1.26 to 1.54 g/L), decreasing flavor and overall impression acceptances. Adding camu-camu pulp resulted in more acidic products (pH of 2.75 vs 3.24), with a higher concentration of some phenolic compounds. The kombucha with L. casei and camu-camu pulp was characterized by a higher concentration of citric and acetic acids, ethanol, ascorbic acid, and most of the phenolic compounds and volatile compounds, higher bioaccessibility of phenolic compounds, increased consistency index, improved functional properties (inhibition of α-glucosidase and antioxidant activity), and better sensory properties. Furthermore, it showed an increased relative abundance of Lactobacillus (+15.11 %) and a decreased relative abundance of Acetobacter (-5.56 %) and Komagataeibacter (-9.12 %) compared to the conventional kombucha. L. casei survived the processing (> 7 log CFU/mL) and simulated gastrointestinal conditions (>5 log CFU/mL). In conclusion, the association of L. casei and camu-camu pulp resulted in potentially probiotic kombuchas with improved chemical profile, functional, technological, and sensory properties, phenolic compounds concentration and bioaccessibility, and bacterial microbial diversity.
Collapse
Affiliation(s)
- Thiago Okagawa Silva
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Giselle Nobre Costa
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Marcos Dos Santos Lima
- Departament of Food Technology, Federal Institute of Sertao de Pernambuco, Petrolina, PE, Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brasil
| | - Tatiana Colombo Pimentel
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brasil; Federal Institute of Paraná, Paranavaí, PR, Brazil.
| |
Collapse
|
6
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024; 65:2343-2364. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
7
|
Dos Santos Rocha C, Magnani M, Jensen Klososki S, Aparecida Marcolino V, Dos Santos Lima M, Queiroz de Freitas M, Carla Feihrmann A, Eduardo Barão C, Colombo Pimentel T. High-intensity ultrasound influences the probiotic fermentation of Baru almond beverages and impacts the bioaccessibility of phenolics and fatty acids, sensory properties, and in vitro biological activity. Food Res Int 2023; 173:113372. [PMID: 37803712 DOI: 10.1016/j.foodres.2023.113372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
High-intensity ultrasound (HIUS, 20 kHz, 450 W, 6 min) was used as an alternative to the pasteurization of a water-soluble Baru almond extract (WSBAE). Then, probiotic fermented beverages (Lacticaseibacillus casei) were processed and evaluated during storage (7 °C, 28 days). Four formulations were prepared: RAW (untreated [no pasteurization or ultrasound] and unfermented WSBAE), PAST (pasteurized WSBAE fermented with probiotic), U-BEF (WSBAE added with probiotic, submitted to ultrasound, and fermented), and U-AFTER (WSBAE submitted to ultrasound, added with probiotic, and fermented). PAST and HIUS-treated beverages had similar microbiological quality. The PAST formulation showed decreased monounsaturated fatty acids, compromised health indices, and had the lowest consistency. U-AFTER showed higher concentrations of lactic and acetic acids, lower bioaccessibility for most phenolics and fatty acids, and reduced consumer acceptance. U-BEF had the fermentation time reduced by 13.64%, higher probiotic survival during storage and simulated gastrointestinal conditions, and higher bioaccessibility of phenolics and fatty acids during storage. Furthermore, it presented higher in vitro antidiabetic properties and improved consistency and stability. Finally, U-BEF had improved volatile compound composition, resulting in increased sensory acceptance and improved sensory properties. Our results indicate that the HIUS applied after probiotic addition may be a suitable alternative to pasteurization in the processing of fermented beverages, resulting in reduced fermentation times and improved technological, sensory, and biological properties.
Collapse
Affiliation(s)
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba (UFPB), Campus I, João Pessoa, Paraíba, Brazil
| | | | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Monica Queiroz de Freitas
- Universidade Federal Fluminense (UFF), Faculdade de Veterinaria, 24230-340 Niter oi, Rio de Janeiro, Brazil
| | | | | | - Tatiana Colombo Pimentel
- State University of Maringá (UEM), Maringá, Paraná, Brazil; Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná, Brazil.
| |
Collapse
|
8
|
Moloto MR, Akinola SA, Seke F, Shoko T, Sultanbawa Y, Shai JL, Remize F, Sivakumar D. Influence of Fermentation on Functional Properties and Bioactivities of Different Cowpea Leaf Smoothies during In Vitro Digestion. Foods 2023; 12:foods12081701. [PMID: 37107496 PMCID: PMC10137366 DOI: 10.3390/foods12081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effects of Lactiplantibacillus plantarum 75 (LAB 75) fermentation at 37 °C for 48 h on the pH, total soluble solids (TSS), colour, total titratable acidity (TTA), carotenoids, and bioactivities of cowpea leaf smoothies from three cultivars (VOP 1, VOP 3, and VOP 4). Fermentation reduced the pH from 6.57 to 5.05 after 48 h. The TTA increased with the fermentation period, whilst the TSS reduced. Fermentation of the smoothies resulted in the least colour changes (∆E) in VOP 1 after 48 h. Fermentation of cowpea smoothies (VOP 1, VOP 3, and VOP 4) improved the antioxidant capacity (FRAP, DPPH, and ABTS), which was attributed to the increase in total phenolic compounds and carotenoid constituents in all of the fermented cowpea smoothies. VOP 1 was further selected for analysis due to its high phenolic content and antioxidant activity. The VOP 1 smoothie fermented for 24 h showed the lowest reduction in TPC (11%) and had the highest antioxidant (FRAP, DPPH, and ABTS) activity. Ltp. plantarum 75 was viable and survived the harsh conditions of the gastrointestinal tract, and, hence, could be used as a probiotic. VOP 1 intestinal digesta showed significantly higher glucose uptake relative to the undigested and the gastric digesta, while the gastric phase had higher levels of α-amylase and α-glucosidase compared to the undigested samples.
Collapse
Affiliation(s)
- Mapula R Moloto
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Faith Seke
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Tinotenda Shoko
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| | - Jerry L Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Arcadia, Pretoria 0001, South Africa
| | - Fabienne Remize
- SPO, Université de Montpellier, Université de La Réunion, Institut Agro, INRAE, 2 Place Viala, F-34000 Montpellier, France
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| |
Collapse
|
9
|
Changes of Bioactive Components and Antioxidant Capacity of Pear Ferment in Simulated Gastrointestinal Digestion In Vitro. Foods 2023; 12:foods12061211. [PMID: 36981138 PMCID: PMC10048753 DOI: 10.3390/foods12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Fruit ferment is rich in polyphenols, organic acids, enzymes, and other bioactive components, which contribute to their antioxidant ability. In this study, we investigated the effect of the simulated gastric and intestinal digestion in vitro on the total phenolic content (TPC), total flavonoid content (TFC), phenolic components content, organic acid content, protease activity, superoxide dismutase (SOD) activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (DPPH-RSA), hydroxyl (·OH) radical scavenging activity (·OH-RSA), and total reducing capacity in ‘Xuehua’ pear (Pyrus bretschneideri Rehd) ferment. The result showed that the TPC, TFC, protease activity, and phenolic components such as arbutin, protocatechuic acid, malic acid, and acetic acid showed a rising trend during the simulated gastric digestion in ‘Xuehua’ pear ferment, and these components might contribute to the increasing of ·OH-RSA and total reducing capacity. The SOD activity and epicatechin content showed an increasing trend at first and then a decreasing trend, which was likely associated with DPPH-RSA. During in vitro-simulated intestinal digestion, the majority of evaluated items reduced, except for protease activity, quercetin, and tartaric acid. The reason for the decreasing of bio-accessibility resulted from the inhibition of the digestive environment, and the transformation between substances, such as the conversion of hyperoside to quercetin. The correlation analysis indicated that the antioxidant capacity of ‘Xuehua’ pear ferment was mainly affected by its bioactive compounds and enzymes activity as well as the food matrices and digestive environment. The comparison between the digestive group with and without enzymes suggested that the simulated gastrointestinal digestion could boost the release and delay the degradation of phenolic components, flavonoids, and organic acid, protect protease and SOD activity, and stabilize DPPH-RSA, ·OH-RSA, and total reducing capacity in ‘Xuehua’ pear ferment; thus, the ‘Xuehua’ pear ferment could be considered as an easily digestible food.
Collapse
|
10
|
Gaur G, Gänzle MG. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 2023; 6:100448. [PMID: 36713641 PMCID: PMC9876838 DOI: 10.1016/j.crfs.2023.100448] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Rasera GB, de Camargo AC, de Castro RJS. Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Compr Rev Food Sci Food Saf 2023; 22:260-286. [PMID: 36385735 DOI: 10.1111/1541-4337.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
12
|
Di Nunzio M, Loffi C, Montalbano S, Chiarello E, Dellafiora L, Picone G, Antonelli G, Tedeschi T, Buschini A, Capozzi F, Galaverna G, Bordoni A. Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami. Int J Mol Sci 2022; 23:12555. [PMID: 36293416 PMCID: PMC9604274 DOI: 10.3390/ijms232012555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 09/04/2024] Open
Abstract
Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Cecilia Loffi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Faustino Tanara 31/A, 43121 Parma, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Luca Dellafiora
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Giorgia Antonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Tullia Tedeschi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianni Galaverna
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
13
|
Gonçalves Santana M, Freitas-Silva O, Mariutti LRB, Teodoro AJ. A review of in vitro methods to evaluate the bioaccessibility of phenolic compounds in tropical fruits. Crit Rev Food Sci Nutr 2022; 64:1780-1790. [PMID: 36062814 DOI: 10.1080/10408398.2022.2119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
International guidelines strongly advise about the frequent and varied intake of plant in diet. In this scenario, the consumption of fruits is closely related to health benefits due to the abundant presence of bioactive substances. Accordingly, the production of tropical fruits has stood out worldwide, reaching records since the past decade. However, to ensure that phenolic substances are indeed used by the body, they need to be accessible for absorption. For this purpose, several methods are used to assess the phenomenon of bioaccessibility. We provide information on i) in vitro methods for the evaluation of the bioaccessibility of phenolic compounds in tropical fruits, including their derivatives and by-products; ii) a study performed using a semi-dynamic in vitro digestion model; iii) simulated digestion with a dialysis membrane step, polyphenol transport/uptake using cell culture, and in vitro colonic fermentation process. Although standardized static and semi-dynamic in vitro digestion methods already exist, few studies use these protocols to assess the bioaccessibility of polyphenols in tropical fruits. To guarantee that in vitro digestion assays reproduce consistent results compared to in vivo reference methods, it is essential to universalize standardized methods that allow the comparison between results, enabling the validation of in vitro digestion methods.
Collapse
Affiliation(s)
| | - Otniel Freitas-Silva
- Embrapa Food Agroindustry, Brazilian Agricultural Research Corporation, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson Junger Teodoro
- Department of Nutrition and Dietetic, Faculty of Nutrition, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
The Bioaccessibility and Antioxidant Activities of Fermented Mango Cultivar Juices after Simulated In Vitro Digestion. Foods 2022; 11:foods11172702. [PMID: 36076887 PMCID: PMC9455754 DOI: 10.3390/foods11172702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the bioaccessibilities of total phenolic compounds, carotenoid profile, antioxidant activity, and Lactic acid bacteria (LAB) survival in fermented mango juice (MJs) obtained from three mango cultivars after exposure to an in vitro gastrointestinal digestion model. The MJs from three cultivars ('Sabre', 'Peach', and 'Tommy Atkins') were fermented using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56), and their combination (L56 + 75). Fermented MJs were digested and fractions: gastric (GF), intestinal (IF), and dialysis (DF) were analyzed for total polyphenolic content (TPC), antioxidant activity (FRAP), 1-diphenyl-2-picrylhydrazyl (DPPH), and 2.2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS). In addition, the carotenoid content and the LAB population were determined from the GF and IF. After digestion, TPC decreased while fermentation improved its bioaccessibility. L75-fermented 'Sabre' MJs had the highest bioaccessible TPC in the GF (75.65%), IF (50.10%), and DF (32.52%) while L56 'Peach' MJs increased the β-carotene bioaccessibility by 1.32-fold at GF and IF (1.21-fold). When compared to the other two juices, 'Sabre' and 'Peach' MJs fermented with L75 showed the highest IC50 values for DPPH and ABTS. Generally, L75-fermented 'Sabre' MJs had the highest LAB survival at both GF (7.57 Log CFU/mL) and IF (7.45 Log CFU/mL) and hold potential as probiotic juices. L56-fermented 'Sabre' MJs would ensure the delivery of four times the carotenoid recommended dietary allowance (RDA) to a target site in the body while L75-fermented 'Peach' MJs could be used to effectively counteract oxidants in the body system.
Collapse
|
15
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Functional food obtained from fermentation of broccoli by-products (stalk): Metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Cele NP, Akinola SA, Manhivi VE, Shoko T, Remize F, Sivakumar D. Influence of Lactic Acid Bacterium Strains on Changes in Quality, Functional Compounds and Volatile Compounds of Mango Juice from Different Cultivars during Fermentation. Foods 2022; 11:foods11050682. [PMID: 35267315 PMCID: PMC8909300 DOI: 10.3390/foods11050682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of lactic acid fermentation using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56) and its combination (L56 + 75) on the quality, bioactive and volatile compounds of mango juices (MJ) from three cultivars (‘Peach’, ‘Sabre’ and ‘Tommy Atkins’) were investigated. Fermented and unfermented MJ were evaluated for LAB growth, physicochemical parameters, volatile compounds, antioxidants activities (DPPH, ABTS, FRAP methods), total phenolic content (TPC) and sensory properties. The unfermented juices served as a control. Twenty-four-hour fermentation was ideal for MJ based on LAB growth profiles. Generally, titratable acidity, TPC, FRAP, DPPH and ABTS scavenging activities significantly increased with fermentation by the L75 strain and were highest in the L75-fermented ‘Sabre’ MJ, while L75-fermented ‘Peach’ MJ had higher ABTS activity (p < 0.05). In contrast, the L56 strain enhanced β-carotene retention, with improved colour properties in L56-fermented ‘Peach’ MJ. Fermentation with L75 in ‘Sabre’ and ‘Peach’ MJ aided the synthesis of new volatile compounds (alcohols, esters, ketones and aldehydes). A PLS-DA scatter plot showed two clusters separating the ‘Peach’ and ‘Sabre’ mango juice fermented with L75 from the rest. Based on the variable importance of the projection value (VIP) scores, pentadecane, 8-hexyl and butyl isobutyrate were shown as marker candidates to distinguish ‘Peach’ and ‘Sabre’ MJ fermented with L75 from the other treatments, whereas ethyl octanoate and isobutyl acetate differentiated the ‘Sabre’ MJ fermented with L75 from the other treatments. ‘Sabre’ and ‘Peach’ MJ fermented with L75 and L56 could provide antioxidants, meeting the recommended daily requirements for ascorbic acid and carotenoids in adults and teenagers. Hence, lactic acid fermentation of these local cultivars is a way to benefit consumers.
Collapse
Affiliation(s)
- Nobahle P. Cele
- Phytochemical Food Network Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (N.P.C.); (S.A.A.); (V.E.M.); (T.S.)
| | - Stephen A. Akinola
- Phytochemical Food Network Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (N.P.C.); (S.A.A.); (V.E.M.); (T.S.)
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (N.P.C.); (S.A.A.); (V.E.M.); (T.S.)
| | - Tinotenda Shoko
- Phytochemical Food Network Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (N.P.C.); (S.A.A.); (V.E.M.); (T.S.)
| | - Fabienne Remize
- INRAE, Institut Agro Montpellier, SupAgro et, Université de Montpellier, F-34000 Montpellier, France;
- Qualisud, Chemin de l’lrat, Université La Réunion, F-97410 Saint Pierre, France
| | - Dharini Sivakumar
- Phytochemical Food Network Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (N.P.C.); (S.A.A.); (V.E.M.); (T.S.)
- Correspondence:
| |
Collapse
|
17
|
Mashitoa FM, Manhivi VE, Akinola SA, Garcia C, Remize F, Shoko T, Sivakumar D. Changes in phenolics and antioxidant capacity during fermentation and simulated in vitro digestion of mango puree fermented with different lactic acid bacteria. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florence M. Mashitoa
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Stephen A. Akinola
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Cyrielle Garcia
- Qualisud Univ MontpellierCIRAD, Institut AgroAvignon UniversitéUniv de La RéunionESIROI Montpellier France
| | - Fabienne Remize
- Qualisud Univ MontpellierCIRAD, Institut AgroAvignon UniversitéUniv de La RéunionESIROI Montpellier France
| | - Tinotenda Shoko
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Dharini Sivakumar
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| |
Collapse
|
18
|
Lee BH, Hsu WH, Chien HY, Hou CY, Hsu YT, Chen YZ, Wu SC. Applications of Lactobacillus acidophilus-Fermented Mango Protected Clostridioides difficile Infection and Developed as an Innovative Probiotic Jam. Foods 2021; 10:foods10071631. [PMID: 34359501 PMCID: PMC8303244 DOI: 10.3390/foods10071631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a large intestine disease caused by toxins produced by the spore-forming bacterium C. difficile, which belongs to Gram-positive bacillus. Using antibiotics treatment disturbances in the gut microbiota and toxins produced by C. difficile disrupt the intestinal barrier. Some evidence indicates fecal microbiota transplantation and probiotics may decrease the risk of CDI recurrence. This study aimed to evaluate the efficacy of fermented mango by using the lactic acid bacteria Lactobacillus acidophilus and develop innovative products in the form of fermented mango jam. L. acidophilus-fermented mango products inhibited the growth of C. difficile while promoting the growth of next-generation probiotic Faecalibacterium prausnitzii. Both supernatant and precipitate of mango-fermented products prevented cell death in gut enterocyte-like Caco-2 cells against C. difficile infection. Mango-fermented products also protected gut barrier function by elevating the expression of tight junction proteins. Moreover, L. acidophilus-fermented mango jam with high hydrostatic pressure treatment had favorable textural characteristics and sensory quality.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 600355, Taiwan; (B.-H.L.); (H.-Y.C.)
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (W.-H.H.); (Y.-T.H.); (Y.-Z.C.)
- Center of Allergy and Mucosal Immunity Advancement at the National Cheng Kung University, Tainan 701401, Taiwan
| | - Hao-Yuan Chien
- Department of Horticulture, National Chiayi University, Chiayi 600355, Taiwan; (B.-H.L.); (H.-Y.C.)
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Ya-Ting Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (W.-H.H.); (Y.-T.H.); (Y.-Z.C.)
| | - You-Zuo Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (W.-H.H.); (Y.-T.H.); (Y.-Z.C.)
| | - She-Ching Wu
- Department of Food Science, National Chiayi University, No. 300 Syuefu Rd., Chiayi 600355, Taiwan
- Correspondence: ; Tel.: +886-05-2717622
| |
Collapse
|
19
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|